
N NAVAL POSTGRADUATE SCHOOL E
Monterey, California C

ON-

THESIS

IMMERSIVE ARTICULATION OF THE
HUMAN UPPER BODY

IN A VIRTUAL ENVIRONMENT

by

Paul F. Skopowski

December 1996 0

Thesis Co-Advisors: Robert McGhee
John S. Falby

Approved for publc revlem; diatributio u mlimited.

97-00619 "

* 0 S 0 0-• 0.

REPORT DOCUMENTATION PAGEOAN.00"8

8du~ Wed toiM di di needed. wed oon~ldig and ruevienv do oufem iiumnr~ SSedaWeni ierig lbs ba WM ~oraber mW~pegid"

0-b IWWV mk bIM.14. A*40n. VAm212024=, & to to ofim. ci &lnqunwd end Budget, Paemwmu Ae~e Prqed (WOWS%11, Wanhiken. Do 2050

Immersve Articlton of th Human Upper Body ina Virtual Environmernt - -

SkopOWSki, Paul F.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRES(SM S. PERFORMING OGNZTO
Naval Postgraduat School REPORT NUIMBIER
Monterey, CA 93943-5000

10. WOSORING/ MONITORING AGENCY NAME() ANM ADDRESS(ES 10. SPONSORING/ MONITORING

IAGENCY
REPORT

NUMBER

11. S4JPPLIMNTARY NOTES .

The views expressed in this thesis are those of the autho and do not reflect the official policy or position of the Department of
Defense or dhe United States Government.

* ha12 DISTRNUUTION / AVAILABILITY STATEMENT 12b. DISTRNIUTION CO
Approved for public release; distribution is unlimited.

* 13.~I ABSTACT (Adimcan 200 won*)0
7This thesis addresses the problem that virtual environments (yE's) do not possess a practical, intuitive, and

comfortable interface that allows a user to control a virtual human's movements in real-time. Such a device would give the user
the feeling of being immersed in the virtual world, greatly expanding the usability of today's virtual environments.

The approach was to develop an interface for the upper body, since it is through this part of users' anatomy that they
interact most with their environment. Lower body motion can be more easily scripted. Implementation includes construction of

* ~a kinematic model of the upper body. The model is then manipulated in real-time with inputs from electromagnetic motion
tracking sensors placed on the user.

Research resulted in an interface that is easy to use and allows its user limited interaction with a VE. The device takes
approximately one sixth the time to don and calibrate as do mechanical interfaces; with similar capability. It tracks thirteen
degrees of freedom. Upper body position is tracked, allowing the users to move through the VE. Users can orient their upper
body and control the movements of one arm. Uncorrected position data from two trackers was used to generate clavicle joint

Sanegles. Difficulty in controlling figure motion indicates that the sensors used lack sufficient registration for this purpose.
Therefom, the interface software uses only orientation data for computing joint angles.

14. SUSAIJCT TEIM TIS. NUMINIR OF PAMlE

human interface, virtual environmentt, articulated humans, human modeling, motion trackers, 1241
0elecoromagnetic sensors, Polhemus, kinematics, NPSNET '10. 0RM Q

7. ~ ~ SEU.T tiS11IAINFCRIYLSRPAIN 't CRT LXSIAI N .LINIATION OF ABSTRACT
or RPRT OZ THIlS IMAGE OF ABSTRACT

Unclasiie Unclassified lUnclassified SUL-

NSN 75401-02W05500 Standard Form 298 (Rev. 2-89)
Prmscibad by ANSI Std. 239-13

* I

* 1*

* 0¸

ApprVed fr publc esu;digribtigom is =umiited.

li

IMMERSIVE ARTICULATION OF THE HUMAN UPPER BODY
IN A VIRTUAL ENVIRONMENT

Paul F. Skopowski
Major, United Staes Marne Corps

B.S.S.E. , United States Naval Academy, 1982
Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the 0

NAVAL POSTGRADUATE SCHOOL

December 1996
0

Author: ,__ _,

Paul F. Skopowski

Approved by: ~£' ''L
Robert B. McGhee, Thesis Co-Advisor

i0

J-ohnS Fsor

Ted Lewis, Cafairma,
Department of Corpute Science

77',

iv

ABSTRACT

*' , This thesis addresses the problem that virtual environments (VE's) do not possess

a pmccal, intuitive, and comfortable interface that allows a user to control a virtual 4
human's movements in real-time. Such a device would give the user the feeling of being

imersed in the virtual world, greatly expanding the usability of today's virtual

environments.

The approach was to develop an interface for the upper body, since it is through this

part of users' anatomy that they interact most with their environment Lower body motion

can be more easily scripted. Implementation includes construction of a kinematic model of 0

the upper body. The model is then manipulated in real-time with inputs from

electromagnetic motion tracking sensors placed on the user.

Research resulted in an interface that is easy to use and allows its user limited 0

interaction with a VE. The device takes approximately one sixth the time to don and

calibrate as do mechanical interfaces with similar capability. It tracks thirteen degrees of

freedom. Upper body position is tracked, allowing the users to move through the VE. Users

can orient thei upper body and control the movements of one arm. Uncorrected position

data from two trackers was used to generate clavicle joint angles. Difficulty in controlling

figure motion indicates that the sensors used lack sufficient registration for this purpose.

Therefore, the interface software uses only orientation data for computing joint angles.

In
I,

v

*|

*•~ i; : •. 0;++' 0+i.:

'Ad
4

4

*

*

*

* I

*

*

6 1*

*
WI

*

A I k�'�'' � - - - -----. -

';�'. 9 V 2�*

* *-:

TABLE OF CONTENTS

* I INTRODUCTION .. 1

A. M OTIVATION .. 1

B. GOALS .. 1

C. ORGANIZATION .. 2

IL BACKGROUND ... 3

A. M ODELING HUM ANS ... 3

1. Manipulation, Animation, and Simulation 4

* 2. M odeling M ethods .. 5 0

a. Graphic M odels ... 5

b. Kinematic M odels .. 6

c. Dynamic M odels ... 7

B. TRACKING HUM ANS .. 8

1. Measuring Motion Tracker Performance 10

2. Types of M otion Trackers ... 1...I I

4 a. M echanical .. 11 9

b. Electromagnetic .. 12

c. Acoustic .. 13

4 d. Optical ... 14 0

e. Inertial ... 16

3. M otion Tracker Placement ... 18

a. Number of Motion Trackers 19

b. Physical Placement of Trackers 21

4. M otion Tracker Calibration .. 23

C. PREVIOUS WORK INTERFACING HUMANS 24

* 1. Individual Soldier M obility System ... 25 0

2. M inimally Sensed Humans and Jack .. 29

3. Compiete and Dim Specification Systems 30

* 0
vii

* "

D. SUMMARY .. 32

MI. FORWARD KINEMATICS ... 33

0 A. KINEMATICS NOTATION ... 33

B. THE KINEMATIC MODEL .. 36

C. IMPLEMENTATION IN C + 41

D. SUMMARY .. 43

IV. INVERSE KINEMATICS ... 47

A. POLHEMUS TRACKING .. 47

1. Hardware Setup and Device Driver .. 47

* 2. Tracker Placement ... 52 0

a. Optimal Tracker Placement .. 52

b. Actual Tracker Placement .. 54

3. Transforming Tracker Data ... 55 0

B. INVERSE KINEMATICS ... 57

1. Using Angle Data .. 58

2. Using Position Data .. 61

• 3. Implementation Specifics .. 64

a. Angles-only Tracking Implementation 64

b. Position Tracking Implementation ... 66

* C. SUMMARY ... 66 0

V. CALIBRATION .. 67

A. CALIBRATING SENSORS 67

1. Angles-only Calibration Technique .. 68

2. Position Calibration Technique .. 69

B. SIZING THE MODEL ... 73

C. SUMMARY ... 75

* VI. RESULTS .. 77 0

A. REPRESENTATION OF HUMAN MOTION 77

I. Angles-only Implementation .. 77

vii

S. .W

S.. •0 0o 0 0O

2. Position tion .. 83

B. EASE OF USE .. 84

* VII. SUMMARY AND CONCLUSIONS ... 85

A. SUMMARY ... 85

B. CONCLUSIONS ... 85

C. FUTURE WORK .. 88

APPENDIX A: ANGLE TRACKING SOFTWARE .. 91

APPENDIX B: FASTRAK DEVICE DRIVER .. 149

APPENDIX C: FASTRAK CONFIGURATION FILE .. 201

APPENDIX D: POSITION TRACKING SOFTWARE ... 203

APPENDIX E: DEMONSTRATION VIDEO .. 217

LIST OF REFERENCES ... 219

INITIAL DISTRIBUTION LIST ... 223 0

0 0
0 0

0 0

ixi

- r.

I
,

14
I

S

* 0

I I.

* to

I. 0

*
a

Si

*
7'

*

I
V
t

* 14
I

p

* S.

0 5* 0 0 0

LIST OF FIGURES 4

Figure 1: Relationships Between Frames of Reference .. 23

Figure 2: ISMS Structure [GRAN95] .. 26

Figure 3: IPORT Human Sensing Technology ... 27

Figure 4: A Minimally Sensed Human [BADL93b] .. 30

Figure 5: Sensor Position on Arm [WALD95] ... 32

Figure 6: Link Coordinate System Assignment and MDH Parameters [CRAI89] 34

Figure 7: Upper Body Model with 24 Degrees of Freedom ... 37

Figure 8: MDH Link Coordinate Axis .. 38

Figure 9: C++ Class and Object Hierarchy .. 41

Figure 10: Link Class Draw Member Function ... 43

Figure 11: Upperbody Class Draw Member Function ... 44

Figure 12: Body Rendered in OpenGL ... 45

Figure 13: Fastrak Hardware Setup [MCMI96b] ... 48

Figure 14: Coordinate System Assignment to Polhemus Devices 50

Figure 15: Software and Buffer Organization (MCMI96b] .. 51

Figure 16: Optimal Motion Tracker Placement ... 53

Figure 17: Actual Motion Tracker Placement ... 54

Figure 18: Polhemus Fastrak Sensor Attachment - Arm Sensors 55

Figure 19: Polhemus Fastrak Sensor Attachment - Upper Body Harness 56 0

Figure 20: Relationships Between Frames of Reference .. 57

Figure 21: Clavicle Position Tracking .. 62

xi

*ii

0 .. .0..... 0... 0 0 S..... •

Figure 22: Relationships Between Frames of Reference .. 68

Figure 23: Tracker Position Calibration - Front View ... 70

Figure 24: Tracker Position Calibration - Side View ... 71

Figure 25: Excerpt from Body Class Calibrate Member Function 74

Figure 26: Angles-only Tracking Implementation in Operation 78 0

0
0

* 4

xii

• O .. _90• •• •• • •0

LIST OF TABLES

Table 1: Trackting Technologies Compared ... 18

Table 2: Joint DOF's and Sensor Requirements [WALD95] 21

Table 3: MDH Kinematic Parameters .. 40

Table 4: Joint Angles Computed - Angles-only Implementation 65

Table 5: Joint Angles Computed - Position Implementation 66

O

0

*

:: . , :'

S.. n

0

0

4

* I..

*

I.

0

0

xlv

0

.1 0 0

4
ACKNOWLEDGMENTS

My sincerest thanks to all those who helped make this thesis possible. Many thanks 4
to Captain Marianne Waldrop for getting me interested in this work and helping to kick-

start this research by providing her work and insights. I would also like to thank Dr. Scott

McMillan. Without the benefit of his research and patient instruction into the finer aspects

of kinematic modeling, this thesis would not have progressed as far as it did. Special thanks

go to my two thesis advisors. Their seemingly endless energy and devotion to the needs of

their students is nothing short of amazing. To John Falby I owe much. His many hours of

*• instruction over the past two years have brought me a long way in understanding the

science of computers. He's a real friend who is always willing to drop what he's doing to

help others with a problem. To Dr. Robert McGhee, I have not known a finer mentor. His

vast experience and unbounded enthusiasm, patience, and encouragement have made

working with him a true delight. My sincerest gratitude to the rest of the students and staff

of the Computer Science Department. They helped in numerous ways, both big and small.

I have not worked with a finer group of people. Finally, but most importantly, thank you

- to my wife Theresa. Without her unwavering support, love and devotion through the years, 40

this and many other life achievements would not have come to pass.

_- 0

xv

S.. .*.. . . . , . .. -:; 0

L INTRODUCTION

4 A. MOTIVATION

Ther is a growing requirement for realistic virtual environments (VE) in which

humans can interact. VE's offer a safe, economical and efficient means to explore or train

* in otherwise hazardous or inaccessible environments. Uses for VE's are numerous and span

disciplines that include engineering, science, education, entertainment, military, law

enforcement and medicine. Recent advances in computer and motion sensor technologies

* have made it feasible to insert humans into the VE and control their movements in real-

time. Presently, however, interfaces to manipulate virtual humans are not well developed

and are only available inside the research community. An urgent need exists to provide a

* practical, intuitive, and comfortable interface that allows its human user to feel as if he is

immersed in the virtual world. In particular, since humans largely interact with their

environments through their hands, an acceptable interface for the upper body is critical.

B. GOALS

The purpose of this thesis is to use technologies currently available to provide the

user with a practical interface for manipulating the upper body of a human icon inserted in 0 .

a VE. The approach is to place motion sensors on the user and have the user's movements

tracked and then replicated in the virtual world. With this in mind, there are three major

goals for the research of this thesis. First, the interface should be effective in driving

realistic and reasonably accurate movement of the virtual human. For example, if the user

touches his right shoulder with his left finger tips, the virtual human should move its joints

in the sa- manner. Ideally, when the motion is complete, the joint angles of the icon match

those of the user. Also, the finger tips of the icon should be touching its shoulder and not

hanging in space smaw distance from the shoulder. Second, the interface should be efficient

*0

1O

" li"

enough to ensure that all actions commanded occur in real-time. The action is represented

graphically as a smooth flow of motion. An added benefit of an efficient interface concerns

its possible futur use in large scale networked VE's where time delays are more critical.

Third, the interface must be intuitive and easy to use. The user can quickly learn how the

icon's movements correlate to his own. Additionally, the system must be relatively easy to

calibnte and the user reasonably unencumbered while wearing the sensors. Collectively,

the success in achieving these goals is determined by whether a user can complete a

particula set of tasks or training in the virtual world [ZYDA92].

C. ORGANIZATION

Chapter II of this thesis provides background information and reviews previous

work related to the area of interactive human interfaces for virtual environments. Chapter

MI provides an overview of kinematics modeling and discusses the development of the

specific kinematics model used to effect the interface. The last part of this chapter discusses

a prototyping tool used to implement the model. The tool is written in C++ using OpenGL

graphics libraries. Chapter IV contains a description of the motion tracking equipment, the

inverse kinematics implementation, and the software used to interface the sensors with the

prototype tool discussed previously. Chapter V provides a discussion of the development

and implementation of the calibration routines used. Chapter VI presents results obtained

from this research. The last chapter, Chapter VII, provides some conclusions and discusses

recommendations for future enhancements and research.

*0

* ~i.

2i

*,

* 0 0 0 0"

* 9 ,

IL BACKGROUND

The speed and power of today's computers have made it possible to create realistic

virtual worlds that can be populated with dynamic entities portrayed in re al-time. Presently,

articulated entity motion is primuily scripted and non-interactive [PRAT95]. One of the

greatest challenges facing researchers concerns the insertion of individual humans into

these interctive environments [WALD95].

In meeting this challenge, researches are faced with several tasks. These include: 1)

creating a model of the human body with the desired level of detail to be used in the virtual 0

world, 2) defining the level of control desired and types of user inputs required to

manipulate the model, and 3) providing the inputs to the model in an acceptable form and

* timely manner. Tasks 2 and 3 are the essence of an interface between the computer 0

generated model and user. The desire is to control most, if not all, the degrees of freedom

represented in the model. (The level of detail of the model used is discussed below and in

* Chapter MII.) An ideal form of user inputs is the user's own natural movements. This

provides as intuitive an interface as possible. The goal is to make the user feel as if he is the

figure being animated, thus giving him the feel of being immersed in the virtual

* environment. The input devices are motion sensors attached to the user and the associated

software. The remainder of this chapter discusses the modeling of humans, tracking of

humans, and work that has been done in putting the two together in an interface.

* 0
A. MODELING HUMANS

First, it is necesary to develop an acceptable model of the human body. Modeling

provides a means to epresent the salient characteristics of a complex systmn such as the* 0
human body. The idea is that an appropriate representaion of the human body (the model)

will be used to help efficiently describe realistic human motion in three dimensional space.

* 0O

3

V"*

71

TM question is, what level of detail is requird in the model to effectively represent the

human in the virtual wodd? This depends on the effects one wishes to achieve by inserting

the human into the virtual environment and the techniques that can be used together with

the model to achieve the desired results. The terms manipulaton, anmadon, and

simulafton describe methods that use models to create visual effects. Before discussing the

methods that have been used to model humans, a discussion of these terms is warranted.

1. Manipulation, Animation, and Simulatiom

Manipulation generally involves the movement of objects in direct response to the

actions of the user. Manipulation is inherently real-time and control of the figure lies

largely with the user, though some constraints in the model may prevent certain unrealistic

movements. Historically, manipulation has been used to reposition human figures into

various static postures [BADL93a].

If the goal of manipulation is to direct a movement, then the goal of animation is to

describe or choreograph motion [BADL93a]. Animation generally has an artistic quality

about it. Success is often measured in terms of how well the motion was expressed.

Animation techniques are generally time consuming and executed off-line since higher

levels of accuracy and control are desired.

Simulation can be defined as the process where one system's behavior (the original

object) can be predicted or extrapolated by observing the behavior of another system (the

model) [CANT95]. With respect to motion, simulation has been described as automated

animation [BADL93a]. In this case, the user describes an input ahead of time and the

system generates the motion. The input is usually a goal and possibly some rules for

making decisions. Control of the model can occur at a higher level The resultant motion is

no longer entirely in the hands of the user but can be heavily impacted by definitions of the

model. Simulation, however, can result in very realistic movements. This form of

4 I

0-

* 0

~mai., is unique to computle and can be a powerful tool in the field of scientific

visualization [WATI'92 and the design of feedback control systems for legged robots

[MCMI96a]. The drawbacks, however, ae that the models used are more complex and

computations associated with them incur more overhead.

Obviously, the distinction between manipulation, animation, and simulation is not

black and white and none of these terms is nmutually exclusive of the others. For example,

by manipulating all the parts of a figure simultaneously, one can in fact animate it. Also,

placing joint angle limits on an otherwise simple graphical model to limit manipulation

could be considered the beginnings of a crude simulation. The terms are helpful, however,

for understading the relationship between a model and its primary uses. With this in mind,

it is appropriate to consider modeling methods that have been used in the past

2. Modding Metods

There are several methods that can be used to model a human. These include

graphic, kinematic, and dynamic modeling methods. Classifying a model as a given type is S

largely a matter of its prevalent features, although a clear distinction between types may not

be possible or necessary. The various modeling methods can actually be thought of as

existing at points on a line that represents a continumn of options and features. Graphic

models would exist at the far left of the spectrum and represent the simplest form of model.

Dynamic, or physically based models would exist at the far right of the spectrum. Finally,

kinematic models would exist somewhere in-between.

a Graphic Mod~l

Graph models re often used in conjunction with animation system and

* commnercial animation pckages. These systems usually provide a means of attaching

objects to each other. The user can construct hierarchies of objects. Manipulation of a

parent object necessarily results in movemnit of its child object, though there is no real

" 0"

notion of articulation. Simply put, the origin of the child object is relative to that of the

peat [BADL93a]. A graphic model of a human could be created by simply attaching

various three dimensional shapes together as needed. Needless to say, numerous graphic

models of humans have been created with varying levels of detail.

b. KiJneadc Models*
Kinematics is the science of motion which treats motion independent of the

underlying forces that cause it [CRAI89]. It includes position, velocity and acceleration and

relates geometric and time considerations. Kinematics models are often used in the field of

robotics. Research in this field has resulted in two standardized and well known kinematic

notations. These are the Danevit and Hartenberg (DH) and the Modified Danevit and

Hartenberg (MDH) notations [DAVI93]. The kinematic model using these notations

specifically describes physical links connected by either revolute or prismatic joints. These

models can be highly efficient at describing articulated rigid bodies [MCMI94].

Kinematic computations generally fall into two categories: forward

kinematics and inverse kinematics. In forward kinematics, the position and orientation of

the last link (called end-effector) of a series of connected links is calculated given the joint

angles associated with each joint in the chain. The motion of the end-effector is determined

by the accumulation of transformations calculated from a base link down the entire series

of links to that end effector [WATI92].

Inverse kinematics is generally not as straightforward as forward

kinematics. Inverse kinematics entails calculating joint angles given the position and

orientation of an end-effector and sometimes intermediate links. In inverse kinematics, as

the mnmber of links in the chain increase, the amount of link position and orientation

information required to unambiguously determine joint angles increases. If not enough

information is provided, the system is said to be redundant. In such a case, additional

0 0

constraints or heuristics must be applied to the system to achieve a unique solution.

Examples of constraints include such things as energy minimization and momentum

conservation [WATr92]. Methods for solving inverse kinematics tend to be unique to each

specific case.

Both forward and inverse kinematics have been used in animation. The

animator can create a 'kinematic skeleton', or model, and manipulate it using either

method. When the desired movement is obtained the animator can then, if required, 'cloth'

the skeleton [WATT`921. The advantage of using forward kinematics to manipulate such a

structure is that it affords the animator more control over the figure's positions. Its

disadvantage is that it is counterintuitive and complicated to use in practice. It is difficult

to specify directly all the joint angles needed to define an exact posture of a complex figure

0 such as the human. Use of inverse kinematics can provide relief from having to specify all

joint angles, though some control may be forfeit. Disadvantages of inverse kinematics

include possible ambiguities and the complexity of computations. The resulting additional

0 overhead may be critical if the application is intended to run in real-time.

Because it offers an efficient, standardized and well-developed

representation of the motion of articulated bodies, a kinematic model is used in this

6 research. Chapter M discusses the notation, methodology and details of the kinematic

model developed as part of this research.

c. Dynanuac Med.!

Dynamics is the study of motion and the forces effecting that motion. The

dynamic model of a human would describe body position and movement largely as a result

of the underlying forces which the neuromuscular system exerts on the body together with

the force of gravity. A rich simulation of the human body would necessarily include some

p of dynamic modeling. Human traits such as weight, strength, and balance require

the consideration of the underlying forces that cause them.

0 There are a number of methods available to simulate the dynamics of

articulated bodies. These methods can take one of two opposing views of the world in their

approach. i.
SIn the first case the view of the world is one of objects and constraints. In

this view, human limb segments e treated as individual objects and are kept in place by

heavily weighted constraints (forces) that join them. There is no real notion of articulation.

0 For complex objects, this approach can be computationally time-consuming [KOOZ83].

In the second case, the world can contain articulated bodies. These bodies

maintain a tree structure with a base link just as in the kinematics approach. The effects of

4 forces can be propagated down a chain of links from the base to affect the body as a whole.

Two of the most efficient methods for achieving these computations are the Composite

Rigid Body (CRB) method and the Articulated Body (AB) method [MCMI95]. It has been

0 shown that the AB method grows in computation linearly with the number of degrees of

freedom modeled, whereas the CRB method grows as the cube of the number of degrees of

freedom modeled [MCMI95]. Real-time simulation of complex articulated bodies (24

0 degree of freedom (DOF) robots) has been achieved using the AB method [MCMI95,

MCMI96a]. By contrast, an elegant dynamic model of a human (30 DOF) that does not use

this method has yet to achieve a real-time capability [HODG95]. This is an active area of

S research and one that could result in real-time dynamic models of humans in the near future.

B. TRACKING HUMANS

Tracking of humans is a basic requirement of almost all VE systems. The focus of

this research is on the human upper body, exclusive of the head. Focus is on the upper body

since humans interact with their environment largely through this portion of their anatomy.

Routine lower body movements such as standing, walking or running can be easily scripted

or controlled by an appropriate stepping algorithm [GUBI74, KWAK90]. Further, head

tracking requirements are highly application dependent and involve close correlation with

the type of visual display being provided to the user. Systems exist and are available

explicitly for this purpose. Interfaces for the upper body are less well developed.

Requirements levied on a system to track the upper body will largely be driven by

requirements to track the hands. This is due to the fact that the range and speed of motion

of the hands is greater than that of other parts of the upper body. Tracking devices whose

sampling rates are fast enough to track the hands will be fast enough to track other parts of

the body. By assuming 5 Hz as the defining frequency for hand motion and requiring 20

times oversampling for sensor noise, [DURL95] estimates a sampling rate of 100 Hz for

tracking the human hand. It is desirable then that any device chosen to track the upper body

have a sample rate of at least 100 Hz.

There are several methods that can be used to track the human upper body. These

include mechanical, electromagnetic, acoustic, optical, and inertial methods.

Correspondingly, there is a variety of trackers either under development or offered

commercially. The research community is in a constant search for effective three-
0

dimensional motion trackers that are affordable and easy to use [WALD95]. As a result,

measures of performance for comparing trackers have been developed and studies of

trackers have been conducted [MEYE92, DURL95, FREY96]. Once the type of tracker to

be used is determined, how many are needed, where they should be physically placed, and

how they will be calibrated must be considered. The following paragraphs discuss how the

various types of motion trackers can be compared.

* 0

* 0'

i ' • • ,9

1. Memuing Motion Tracker Performance

Determining which tracker to use requires the use of standard measures

performance. Currently, there is a lack of agreement on performance specifications and

how they should be measured [DURL95]. Work in this area is needed before more

quantifiable comparisons can be made. In the mean time, [MEYE92] suggests motion

trackers be evaluated in more general terms by the following certain key measures, namely;

(1) resolution and accuracy, (2) responsiveness, (3) robustness, (4) registration, and (5)

sociability. Resolution is defined by the smallest change that can be detected by the system.

Accuracy is considered the range over which the measured quantity is correct. Accuracy

would include a sensor's drift; i.e., the tendency of its output to change without any change

in input. Responsiveness is a measure of the quickness with which new information is

provided. It is determined by sample rate, data rate, update rate and latency, with latency

being the most critical factor. Latency is sometimes called lag. It is the delay between the

movement of the sensed object and report of the new position and orientation. Robustness

is a measure of the tracker's effectiveness in the presence of noise or other signal

interference (including shadowing) in the operating environment. Registration is the

correspondence between a unit's actual position and orientation and its reported position

and orientation over the domain of the working .:.;,nme. Lastly, sociability is a measure of

how well the tracker interfaces to track multiple objects in the same environment and the

range of operation at which it can function. Range of operation is sometimes referred to as

working volume.

In addition to considering these performance factors, one might consider

availability, cost, and ease of use before actually selecting a position tracker. Certainly

availability or cost can put a system out of reach. If the virtual reality application associated

with the sensors is intended for general use, then it is desirable that the system be easy to

10

set up and use. Additionally, one would like the user's movements to be unincumbered

since a free range of motion is necessary to enhance the illusion of being immersed in the

virtual environment.

2. Types of Motion Trackers

There are many different motion trackers being developed and marketed. A brief •

overview of types of trackers and their pro's and con's follows. This section concludes with

a discussion of why a specific tracker type was selected for this research.

a. Mechanical 0

Mechanical trackers measure change in position and orientation by

physically connecting the object being tracked to a point of reference with jointed linkages.

In the case of a human, the point of reference can either be another part of the human body

or a fixed surface near the human. Thus, these trackers can be separated into two basic

types, body-based (exoskeletal systems) and ground-based systems [DURL95]. Body-

based systems are used to track the user's joint angles or end-effector positions relative to

some other part of the body. Ground-based systems are attached to some surface near the

user. Generally, the user grasps an implement whose position and orientation are tracked.

The fact that mechanical trackers are a system of physical linkages attached 0

to the body or constantly held makes them cumbersome. This is an undesirable trait if the

goal is to give the user the freedom of motion and activity associated with being totally

immersed in a virtual environment. This feature, however, makes mechanical trackers an

excellent choice for haptic (force-feedback) devices, since they are rigidly mounted to the

user and/or a nearby surface [DURL95]. Also, mechanical trackers tend to be accurate,

responsive, and robust. On the other hand, they have poor sociability [MEYE92] and can

be difficult and time consuming to calibrate [DURL95, PRAT95].

II0

S+ ._ _o o ._o • o,.. •

b. E/ucbeouaguse&

Electromagnetic trackers are trackers that utilize the electromagnetic

spectrum. Electromagnetic spectrum is defined in a narrow sense to mean radio and

microwave frequencies. The two methods considered here include electromagnetic and

spread-spectrum ranging techniques. i

Electromagnetic position trackers work on the principle that a magnetic

field induces voltage in a coil. Typically, these systems comprise a transmitter and receiver.

The emitter generates three mutually perpendicular electromagnetic fields if the coil is in

motion or the field is changing. The receiver is comprised of three orthogonal coils, each

generating its own voltage in the presence of the electromagnetic fields for a total of nine

voltages. The voltages generated are used to determine the sensors orientation. Voltage

strengths of the three transmitted signals are used to determine the location of the receiver

[MEYE92].

Electromagnetic trackers have been commercially available for some time

and are reasonably inexpensive and easy to use. Not surprisingly, they are by far the most

prevalent in use today. They tend to have good accuracy in a small working space, with

accuracy trailing off as distances from the transmitter increase. Robustness is adversely

effected by sensitivity to ferromagnetic objects in the vicinity, with AC-based trackers

being more susceptible than DC-based trackers. AC-based systems tend to generate eddy

currents in metallic objects which then cause their own electromagnetic interference.

Adding power to the transmitter to increase the working volume can increase noise. Both

systems are adversely impacted by noise from power sources. Responsiveness is poor

compared to other methods. Moreover, this feature adversely impacted by design

provisions that enhance robustness, particularly in AC-based systems. In the past, use of

noise filtering techniques caused additional lag problems [MEYE92]. Magnetic systems,

however, are unaffected by non-ferromagnetic occlusions, a big plus. Sociability is best in

12

S

*

an environment without ferromagnetic occlusions, but limited due to a small range of

operation. Still, these systems can be very effective at shorter ranges.

A second method recently proposed involves ;e of spread-spectrum

ranging techniques [BIBL95]. This technique uses the measured time of arrival of

electromagnetic pulses to determine range from a set of fixed transmitters (or receivers).

The concept is similar to that of the Global Positioning System used for navigation. A

minimum of three fixed transmitters would be required to determine position via

triangulation, plus a fourth transmitter to ensiore time can be accurately computed by the

receiver [LOGS92]. Transmitted signals all occupy the same wide bandwidth and utilize

code division multiple access (CDMA) to preclude mutual interference.

Though these systems are not currently available, it is likely that they will

be soon. Recent developmental efforts have shown the concept to be technically feasible

[ADVA96]. Work performed by Advanced Position Systems, Inc., under contract to the

Naval Research Laboratory, Washington, D.C., has shown that head tracking with accuracy

in the millimeter range is possible. Sampling was conducted at 1000 Hz. The accuracy and

responsiveness shown by this type of system will remove many of the limitations of current

electromagnetic systems. Additionally, if spread spectrum transmission techniques are

used, they are very robust in the presence of noise. However, they are not immune to

ferromagnetic occlusions. Perhaps most significantly, sociability of this technique would

be excellent due to longer range of operation and an ability to track a large number of

targets simultaneously [BIBL95].

c. Acoustic

Acoustic systems use ultrasonic devices to track objects via one of two

methods. The time-of-flight (TOF) method uses the known speed of sound through air to

calculate distances between transmitter and receiver. Once these distances are known,

13

* 1*

* 0 K 00 S /

4O
triangulation between several receivers and one transmitter (or vice-versa) can be used to

detem position. Orientation is determined by tracking position at three locations on the
" same object. The second method is called the phase-coherence (PC) method. This method

senses phase difference between transmitted and received signals and converts a change in

phase to a change in position. Objects that move farther than half a wavelength in one

"6 update period will induce tracking error. Because of this, small errors in position

determination can result in larger errors over time [FREY96, LIPM90].

Performance of these two systems can vary greatly in an open room

"S environment. Phase-coherent systems enjoy many benefits over time-of-flight systems due

to much higher data rates [MEYE92]. If the range is small, both systems offer good

accuracy, responsiveness, and robustness. As range increases, data rates for time-of-flight

systems decrease, causing responsiveness and robustness to decrease. Both systems suffer

severe effects from occlusion. Sociability of phase-coherent systems, however, is better

than that of time-of-flight systems due to larger working volumes [MEYE92].
* 4O

"6 Acoustic systems are relatively inexpensive. They offer better range of

operation than magnetic systems but can suffer severe effects from shadowing that can

occur between tracked body parts or other objects.

4E Optical

There are more types of optical trackers than any other position tracker.

Generally, these can be broken down into those that use unstructured light (usually infrared

or ambient light) and those that use structured light (i.e. lasers).

Optical trackers that use unstructured light can place the sensor on the

tracked object and emitters at fixed locations around the tracked object (inside-out systems)

or vice-versa (outside-in). These systems more typically track objects by placing a set of

cameras (or other light sensitive devices) at fixed locations around the operating volume.

1
14

* 01

* 0.0,0,

Targets my be marked with actively emitting light sources (often infrared diodes)

[MCGH79, KOOZ80] or they may be passively tracked. Triangulation is then used to

determine position. Distinguishing common reference points in a scene between cameras

can be a problem, especially for systems that don't use marking. Use of a short focal length

to enablethe camera to view a larger volume causes reduced accuracy at longer ranges.

6 Pattern recognition systems are image-based systems that determine

position by compaing known patterns against sensed patterns. These systenms become less

accurate as range increases since the virtual image size of the object decreases.

Additionally, they require complex algorithms to interpret scene content [MEYE92].

Structured light systems use lasers to scan a scene. Beam forming optics are

used to create a plane of coherent light whose reflections are then captured by a two-

6 dimensional camera. The intersection of the known plane and the line of sight from the

camera are used to determine three-dimensional coordinates. Another common method

uses laser spot scanning of the scene. In this method either all or only portions of the scene

may be scanned for data [DURL95].

Two of the most prevalent techniques that use lasers include laser radar and

laser interferometry techniques. Laser radar works in the same way as acoustic ranging

* techniques, except that much higher data rates are possible. Laser radar techniques include

time-of-flight and phase shift techniques. By scanning the entire scene, a three-dimensional

picture of the scene can be generated. Laser radar techniques are more appropriate for

• longer distances than laser techniques that use triangulation [DURL95].

The second technique, laser interferometry, uses a steered laser beam to

track a reflector on the object being tracked. Phase-shift ranging and angular information

* from the steered system are used to deternine position. A second method uses several

lasers to track the reflector from different fixed positions and range information only. In

this case, the intersection of spheres whose radii are determined from the range information

15

• '.0 •@I 9

S.. "0, I0 I0 0 [- "" :] ll i lliJ = '.

and whose centers are located at each laser determines the location of the point being

tracked. The problem with these techniques is that they provide only incremental

displacement data and loss of signal via shadowing can be cause for recalibration

[DURL95].

Though there ae numerous types of optical tracking systems, some general I
commnmts about their performance can be made. Most optical systems must inherently

trade-off between accuracy and range of operation. Additionally, all optical systems can be

impeded by the effects of shadowing [FREY96]. To get around these problems, designers

often develop multiple emitter/sensor architectures that are complex and expensive.

Conversely, however, these system can have very high resolution and accuracy, especially

structured light systems. They tend to be very responsive due to high data rates, and so are

well suited to real-time applications [MEYE92]. Sociability is system dependent, but can

be limited by range of operation and shadowing considerations.

e. Iergi/

Inertial trackers that utilize small micro-machined linear accelerometers and

angular rate sensors can create an "artificial vestibular system" [BACH96a] for tracking

orientation. An angular rate sensor operates by using the differential combination of the

outputs of two vibrating linear accelerometers or by sensing "Coreolis" torques at the base

of a vibrating umning fork [SYSTRO]. Angular rate sensor drift is con-mpsated for by using

linear accelerometers together with the earth's gravitation field to sense angular

orientation. Since angular rate sensors are accurate for high frequencies and linear rate

sensors are accurate for low frequencies, a cross-over filter can be used to combine the

inputs from each. Additionally, the earth's magnetic field may be used to compensate for

drift in azimuth. Three of each type of acceleometer (linear and angular) orthogonally

1

16

*i

* S. .. . SI.• . ..i . e • • _• . . •,! • •

* 0

orientd we needed to My describe an object's position and orientation in space 4
[FREY96•.

Several coipanies have begun manf small accelerometers but

devices small enough for use in tracking angular orientation of human body parts are just

now becoming available [INTE96]. These systems hold much promise for future

application to the body tracking problem [FREY96]. Larger systems have shown that

accuracy, resolution, response, robustness and registration requirements for human body

tracking can be met by this technology [BACH96a]. Although the technology is currently
0

expensive, it is expected that costs will come down as devices are marketed. Perhaps the

greatest benefit of this type of system, however, relates to its sociability. Whereas

elet agnetic, acoustic and optic devices all require emissions from a source to track
4 objects, inertial trackers are sourceless. This precludes the inevitable disastrous effects of

occlusions and noise, with the exception that some form of wireless transmission will be

required to pass data from the tracked objec:.
4 Table 1 provides a summary of the position tracker capabilities discussed

[BIBL95, DURL95, FREY96, MEYE92]. Of the types of trackers listed, inertial and

spread-spectrum systems were not commercially available during the research of this
4 thesis. Additionally, the cost and complexity of optical systems has precluded their

consideration for use in this research. The remaining three technologies include

mechanical, magnetic and acoustic trackers. Mechanical techniques for tracking the upper

body have been implmiented and have been shown to be cumbersome and difficult to use.

Acoustic trackers can provide potentially excellent accuracy and resolution together with a

greter range of operation than magnetic trackers. However, acoustic trackers can suffer

0 severe effects from shadowing of one body part by another, whereas magnetic trackers do 0

not This is a key factor in selecting magnetic trackers for use in this research, despite this

technology's limitations. It also indicates the potential of other technologies that don't
* 0

17

* $0

Pismoy Modiammkal DE3 rmagnetic Acoustc optical Imertid4

Accuracy & Good k& Modertae TOP: Good Excellen Good
Resolution SS: Excelient PC: Excelent

Responsiveess Good Wt poor TOP: Moderaft Excellent Good
SS: Good PC: Good

Robutnss Excellent M~ Moderate TOP: Poor System Excellent 1
4 SS: Good PC: GoodDendt

Regisaaziw Unknown Unknown unknown Unknown Good

Sociability Poor K. Poor System System Excellent
SS: Excellent Dependent Dependent _ _ _

Em of Use Poor Good Good Good Good

cost Acceptable K: Inexpensive Inexpensive Expensive Expensive
SS: Expensive

Availablit yes KM:yes yes yes No
SS: No

Mt magnetic AeMi method
SS: spread specuum method
TOP: time of flight method
PC: plum-coherence method

Thble 1. Tracking 1Tchnologies Compared

suffer the effects of shadowing such as spread-spectrum ranging and inertial trackers.

These technologies have potential for providing much needed increases in accuracy,

response and range of operation over magnetic systems available now.

3. Motion Tracker Placement

* Once a specific motion tracker is selected, placement of the trackers requires0

consideration. Specification of the number and placement of trackers to be used on the

human body depends on a number of related factors Some of these factors as they relate to

* ~~electromagneic trackers are identified here, though similar considerations apply to other

types of trackers.

*@

a Number of Mans Ticarws4

In order to unambiguously specify a single rigid body's position and 4
orientaton, a single six degree of freedom (DOF) tracker is required. The tracker provides

the x, y, and z coordinates and roll, pitch and yaw of the tracker relative to some fixed frare

of reference. Alternatively, one could use three three DOF trackers that provide x, y, and z

position only and place them on different locations of the same body. Suppose the rigid

body is attached to another and the attachment point provides three degrees of freedom

(such as a ball and socket joint). If the x, y, and z coordinates of this attachment point are

known, then either a single three DOF orientation tracker or two three DOF position

trackers (not colinear with the attachment point) placed on the body will be sufficient to

specify all six DOF of the body. This second example can be considered a simple

articulated body.

For articulated bodies, deternmning the required number of trackers needed

is dependent on the DOF's inherent in the body. As seen from the previous example, it can

also depend on the amount and type of DOF data provided by the tracker. For now, only

six DOF trackers will be considered. Take for example a six DOF robot arn with the end

of its base link fixed at a known position. All linkage position and orientations can be

specified by using one six DOF tracker that mreures position and orientation and is placed

on the end-effector. Inverse kinematics is used to determine the joint angles of the links. If

the robot arm were to have seven DOF's as in the human arr, then a single six DOF tracker

at the end-effector would not be sufficient to reproduce all the joint angles associated with

the system. In such a case an infinite number of solutions for one or more joint angles

results. In general for wailad bodies that ae tracked by six DOF trackers, the number

1. Fr a inem dieph dicua•i of the vablilky of ime kinmacs problems see [CRAI9].

19

*!

* 0 0

of trackers required can be determined by dividing the number of DOF's in the body by six

and adding one if any remainder results.

The terms under specfied, completely specified and directly specified are

introduced to help provide a framework of understanding. The term under specified is used

when the number of trackers associated with the system is not sufficient to unambiguously

detmnine all the joint angles of the articulated body. In this case, inverse kinematics will

result in an infinite set of possible linkage positions. Additional constraints on the system

must be identified before a unique solution will result. The term completely specified is

4 used when the number of trackers associated with the system is sufficient to unambiguously

determine all joint angles of the articulated body. In robotics, the term fully specified has

the same meaning as completely specified. The term directly specified is used when an

4 articulated body is completely specified and all physical links' joint angles can be directly

measured. Directly measured means that data from one or more trackers on the physical

link can be used to determine the joint angles to within a constant transformation matrix.

0 In designing an interface, selection of the type of system (under, completely

or directly specified) can have an impact on performance. For a real-time application, the

goal is speed. Ideally, one would like to provide just enough data to completely specify the

0 system while avoiding the computational overhead associated with using complex inverse

kinematics. A completely specified system avoids the computational overhead associated

with implementing algorithms that enforce realistic constraints on the system. A directly

0 specified system ensures that only the simplest of inverse kinematics are used to determine

all limb segment orientation& The trade-offs associated with a directly specified system

include the cost of additional hardware and a more encumbered user.

6 If it is desired to directly measure the joint angles associated with a link,

then a single six DOF tracker attached to the link will suffice. If the x, y, and z coordinates

of the joint attaching the link to the rest of the body are known, then a single three DOF

20

0 -0

* 0

orimentaion tracker is all that is required. From this, it is easy to see that by knowing or

tracking the position of the base link of an arculated body all that is needed to fully specify

the system is one three DOF orientation tacker on each link. Table 2 shows the number of

sensors required for complete and direct specification of the human arm.

sesors #Semsors
6 Arm Cumulative Cemplete Direct

Joit Sqmet JoIt DOF DO" Spedlatlonb SpecifatinC

Shoulder UpperArm 3 3 1 1

Elbow Foream 1 4 1 2

SWrist Hand 3 7 2 3 0

Table 2. Joint DOF's and Sensor Requirements [WALD9S]

a. asumes coordinates of shoulder are known
b, elbow and wrist joint seasr numbers reflect use of six DOF sensors
c. only three DOF orientation trackers required

b. Physic•l Placement of Trackers

In a general sense, the possible placement of trackers was alluded to in the

previous section. If it is desired to create a directly specified system for the anticipated

speed it offers, a six DOF tracker can be placed on the base link and three DOF orientation

trackers on each additional link. With this information, the figure's complete state can be

specified. There are other considerations, however, for placing the trackers. •

There are several problems associated with using trackers to infer joint

angles. The first concerns soft tissue and the potential for relative motion between the

tracker and the limb segment [DURL95]. For example, suppose a tracker is placed on the

upper arm near the shoulder to measure three DOF motion. It is unlikely that this tracker

will sense the roll of the upper arm accurately, since the tissue it is attached or strapped to

remains relatively stationary in relation to the underlying bone stucture. A better place to

sense shoulder roll would be near the elbow or possibly even on the forearm near the elbow.

• 2
21

* i

.,0 . 0

A second problem associated with inferring joint angles involves the fact

that human joints are not perfect hinge or spherical joints [DURL95]. In fact, their axes of

rotation move with the joint angle. In some cases they aren't revolute joints at all. For

example, the forearm can be rolled yet the elbow is a single DOF hinge joint. This is

because the bones of the forearm form a closed chain of links with two bones twisting

around each other to allow the wrist to turn. In the first case, where human joints

approximate revolute joints, the effects of not using a model and calibration scheme to

account for this are within the expected resolution of today's magnetic trackers. In the

0 second case, a simplified model can still be used dependent on the level of detail desired in

the application. It is important, however, to position the tracker where the DOF's modeled

can actually be sensed.

0 So far, implementations which rely exclusively on three DOF position

trackers have not been discussed. In fact, some tracking systems only provide positional

data from which orientation must be derived. It was already shown how two position

trackers can replace one orientation tracker on a single link. This is, however, an increase

in the number of sensors a user must wear. As mentioned earlier, considerations for

placement are similar to those for the orientation tracker with the added constraint that

4 sensors not be colinear or near colinear with each other and the joint.

One suggestion has been to place one three DOF position tracker at each

joint of the human [BIBL95]. Placing three DOF position trackers at the joints is less

problematic with regards to soft tissue, since joints generally have less soft tissue on them.

Problems arise, however, with regards to determining methods of attachment at the joints

that are secure, yet unencumbering to the, user. The sensors can be offset from the joints to

mitigate these effects, though calibration of the offset will be required. This system,

however, is not directly specified and requires more complex inverse kinematics to

22

"A •.

determine the orientation of each limb. At least two additional position trackers will be

needed on the end-ffectors (hands, head, etc.) to make the system completely specified.

4. Motion Tracker Calibration

Once the trackers are placed on the tracked object or limb, they must be calibrated.

The calibration process is used to determine the relationship between the tracker's frame of 0

reference and the tracked object's frame of reference. Once the transformation matrix

between the tracker and object is known, then data reported by the tracker can be

transformed into a position and orientation of the tracked object in world coordinates. 0

Figure I illustrates the basic concept. The three frames of reference (world, tracker

and limb) are right hand coordinate systems. A black dot inside the circle indicates the third

axis coming out of the page. An 'X' signifies the axis going into the page. The world 0

coordinate system is fixed. For magnetic trackers it is often associated with the

transmiitter's antenna which does not move. The tracker's frame of reference is fixed to the

Limb 1'
Segment
Coordinate
System r I- m World

a - I Coordinate
I System

/ (transmitter)

SA&
Motion
Tracker
Coordinate
System
(receiver)

Figure 1: Relationships Between Frames of Reference

23

S.. 0 _

.. . 0

0

IO

case of the magnetic receiver. The limb segment's frame of reference is fixed with respect

to the underlying bone structure of the limb and is usually located at the joint whose

position and angles are to be determined. If it is assumed that the tracked object is a rigid

body, then the position and orientation of the limb relative to the frame of reference

attached to the tracker is constant Knowing this constant transformation matrix then makes

it possible to transform tracker position and orientation in world coordinates to limb

segment position and orientation in world coordinates.

If aHb represents a homogeneous transfer matrix for mapping coordinates given

with reference to frame b into coordinates that are referenced to frame a [CRAI89], then

the relationship discussed above is mathematically represented as:

"H1 t = `HHl (eq 2.1) 0

where tx, r and I stand for transmitter, receiver and limb segment respectively. If the limb

segment is placed in a known position and orientation relative to the world coordinate

system, then 'xH- for this position will be known. While the limb segment is still in this 0

position, data from the tracker can be read to determine 'Hr. From these two known

quantities the constant 'HI matrix can be calculated. This is basically what occurs during

the calibration process. Once the world coordinates of the tracked object are known, then

by knowing the dimensions of the limb segment it is possible to render a suitably scaled

replication of it in the virtual environment. A more detailed analysis of calibration is

provided in Chapter V.

C. PREVIOUS WORK INTERFACING HUMANS

Man-machine interfaces are necessary for the useful operation of any computer.

Significant advances in the usability and application of computers have followed advances

in techniques for interfacing computer users with their machines. Some examples include

24

0 00 0 000

development of higher level programming languages, mouse pointing devices, and 4
graphical user interfaces (GUls). More recently, advances in motion tracking technology

have made it possible to create interfaces that permit real-time control of the highly

dynamic entities that populate virtual worlds. Without these interfaces, interaction with

virtual environments is greatly restricted, reducing the scope of their application.

In order to insert the human in the virtual environment, it is necessary to construct

an appropriate man-machine interface. The goal is to make the interface as transparent and

intuitive as possible for the user. The desire is to enhance the perception that the user is

immersed in the virtual environment. At the same time, the interface must convey a large

amount of information on the activities of the user to the machine. This is a tall order.

In this section, a review of some of the work on interfaces designed to insert the

human in a virtual environment is presented. These implementations combine the use of

computer models and motion tracking hardware as previously discussed. The focus is on

systems that interface upper body movement.

1. Individual Soldier Mobility System

The Individual Soldier Mobility System (ISMS) is a simulator designed to allow the

inclusion of dismounted infantry into large-scale simulated combat exercises. Its hardware

was developed at Sarcos, Inc. Software for ISMS was developed by groups at the Naval

Postgraduate School, University of Utah Center for Engineering Design, Sarcos, and

University of Pennsylvania [WALD95]. Project funding was provided by the Army

Research Laboratory - Human Research Engineering Directorate in late 1993. The system

was first demonstrated in 1994. This demonstration marked the first time that individual

dismounted soldiers could operate in a virtual environment together with traditional vehicle

simulators [BADL94]. System components include the Individual Portal or I-PORT,

through which u-,er inputs and visual/force feedback are provided, the Jack human software

25

. ..0 _ 0 ...• 0 . .. • _5....... . • 0 0... . 4

model, and interface software. I-PORT is currently one of the few force feedback devices

available for inserting humans into the virtual environment [PRAT94, PRAT95].

The structure of ISMS as it was first demonstrated is shown in Figure 2. The I-

PORT system is shown in Figure 3. To use ISMS, the soldier wears a body suit that

measures upper body joint angles. He holds an instrumented rifle and sits in a room called L
the Walk-in Synthetic Environment (WISE) on a pedal-based mobility simulator.

Computer generated imagery is provided via Head Mounted Display (HMD) and three

large video screens. The suit, seat, rifle and image generator together make up I-PORT. The

soldier moves through the environment by pedaling the I-PORT. He changes his direction

of motion by twisting in his seat. The surface normal for the soldier's virtual position is

computed and provided so that resistive feedback can be implemented consistent with

terrain [GRAN951.

To/From Simulation Network
S~~DIS PDU's

PeMs Resistac Joint angles (n sPeruiii)
I ~~~Heading J i ta g e

SPedalVelocity

Positin PosiTo n .
S[-- ----. -uy-.

Suit angls mlo

I ~Jack '

I-PORT

Figure 2: ISMS Structure [GRAN95]

26

S

5. S 5 '

IMP

0

Figure 3: IPORT Human Sensing Technology

The human model that is used as part of ISMS is called Jack. Jack software was

developed over a two decade period at the University of Pennsylvania. Jack is a general

purpose interactive environment used for manipulating articulated figures [BADL93a]. It

uses its own notation (called Peabody) and was primarily designed for use as a human

factors visualization tool. The human model associated with Jack is largely kinematic, 0

though provision is made for associating strength values with joints and computing figure

balance. The full Jack model includes 73 joints and 136 DOF. A general purpose constraint

engine is provided with Jack that uses an iterative inverse kinematics procedure. High-level

behavioral control is possible with Jack via software that manages articulation and

27

I 0a • m mm wm l ,, ,, im i i m Hm i

- -O

constraints when given a goal directed input Jack provides the capability to simulate

certain human behavior Not all of this functionality is needed or used in ISMS. 41
I-PORT and Jack are interfaced together through Naval Postgraduate School

Networked Virtual Environment (NPSNET) application software. This software includes

DIGuy and NPSNET-DL DIGuy provides overall control of the system and information

Sflow as shown in Figure 2. Additionally, it provides an interface with the rest of the

networked virtual environment through use of Distributed Interactive Simulation (DIS)

protocols. To do so it creates the appropriate protocol data units (PDU's) and sends them

0 out over the net. NPSNET-DI manages terrain data, provides force feedback, and renders

visuals and audio. The Jack model accepts heading, velocity, position and sensor suit

inputs. It provides joint angles and position to the NPSNET applications for rendering. Jack

- provides realistic joint angles for the lower body that are in concert with inputs from the

mobility simulator. These angles cause the lower body to be rendered as though the figure

is standing, walking or running. Upper body angles are taken from the sensor suit, checked

for validity, and passed on.

Subsequent versions of the ISMS system were redesigned to overcome significant

inefficiencies in the original system [PRAT95]. In the original system, DIGuy ran on a

6 central server and Jack software ran on its own workstation. The new system architecture

eliminated the need for this server and workstation, but created the need for a low level

controller for I-PORT. Most of the functionality of the original system was converted into

a linkable libraries and associated with a single main NPSNET application. In the interest of

efficiency, Jack was replaced by Jack Motion Library (JackML), a subset of the original

software.

6 As can be seen from Figure 3, the upper body tracking in ISMS is accomplished

through a mechanical tracker. The sensor suit of I-PORT provides accurate position and

orientation in real-time, but is not without its problems. During ISMS's first demonstration

28

• : :•"

in Februar y, 1994 some who used it felt the suit was cumbersome and difficult to adjust.

The system requires a lengthy calibration process for each user. Calibration measurements

prior to the demonstration were often accompanied by high noise levels that resulted in

jerky motion [PRAT94]. At later demonstrations of the suit, the numbers of users made it

impractical to calibrate the system for each user. As a result, it was decided that the icon

lock its hands on the rifle and inverse kinematics be used to provide joint angles for the

arms. While this was visually acceptable, the user could never put his rifle down in the

virtual environment [PRAT94].
* 0

2. Minimally Sensed Humans and Jack

At the University of Pennsylvania efforts have been undertaken to track, in real-

* time, the posture and position of the human body using a minimal number of six DOF 0

sensors [BADL93b]. The goal of this research is to recreate the user's upper body

positioning without encumbering him with sensors. Four six DOF magnetic Flock of Birds

Srwackers from Ascension Technology, Inc. are used. Flock of Birds is a DC-based system. 0

Sensors are placed as shown in Figure 4, with one each on the palms, head and waist The

system is underspecified. Unsensed joint angles are determined using inverse kinematics

0 and Jack's goal directed behavioral algorithms.

The system utilizes an Extended Range Transmitter enabling the user to move in an

8-10 foot hemisphere. Bird sensors are connected to a Silicon Graphics 310 VGX via

* RS232 interface operating at 38,400 baud. Special interface software is used to circumvent .

the IRIX operating system and allow Bird data to reach the application with minimal delay.

This allows for each tracker to provide 25-30 updates per second of which only eight to ten

* are used. Overall performance in a shaded environment with 2000 polygons is eight to ten

frames per second. This could be considered near real-time if 15 Hz is considered the

minimal acceptable for real-time applications. The cause for this relatively slow

* 0

29

-.

- 4

*0

*7 " S

Figure 4: A Minimally Sensed Human [BADL93b]

performance is attributed directly to the inverse kinematics routine [BADL93b]. In this 0

case, Jacobian inverse kinematics as described in [KLEI83] might work better. The routine

runs in the interframe update to strike a balance between position accuracy and refresh rate.

It was also noted that the system requires better noise filtering algorithms, both for the 0

equipment and for erratic inputs from the human operator.

3. Complete and Direct Specification Systems

Recently, research at the Naval Postgraduate School has focused on improving the

usability of I-PORT by replacing its mechanical sensor suit with a magnetic system.

Parallel efforts were undetAaken to develop systems that were completely and directly

specified (MCMI96b, WALD95J. These efforts centered on modeling and tracking the

human arm. In each case, an MDH model of the human arm was developed to be used with

30

6 0

* I+i .? . + 0- 0• :

the JackML software of ISMS. The models were designed in such a way that inverse

kinemaics result in joint ngles that ate within a constant of those utilized in Jack. This

permits the interface to quickly convert results to "Jack angles" and then override existing

Jack angles to render the figue in the proper posture. Br' .uns utilize the Polhemus

Fasonk magnetic tracking system. The Fasurok system is ,. AC-based system with range

of operation similar to Flock of Birds.

The completely specified system uses four six DOF trackers, one on the back of the

neck, one on each wrist, and one to track a rifle. Two degrees of freedom in the wrist are

fixed resulting in a 5 DOF arm. A software driver for the Polhemus sensors was written to

accept data from the sensors at the highest rate available. If two sensors are utilized (i.e.

one arm is tracked), then 60 Hz is the maximum available from the sensors. For all four

Fas ak sensors, the rate is 30 Hz. Data was provided to the SGI workstation via RS232 at

9600 baud. The 9600 baud rate proved to be a bottleneck preventing sampling rates higher

than 15 Hz. Faster RS232 interfaces with the SGI should be possible, but have not yet been

implemented [(CMI96b]. The 15 Hz sample rate, sensor noise, and overhead associated

with communicating with NPSNET and Jack, cause somewhat jerky motion to be

displayed.

Work on the directly specified system remains incomplete. The system was to

include four sensors, to be placed on the torso, upper arm, forearm and hand. Figure 5

shows tracke placement on the arm. With this placement, all seven DOFs of the arm could0 0
be tracked.

It is the purpose of this thesis to continue research described in [MCMI96b] and

[WALD95], and extend its applicability to the entire upper body.
0 3

31

* i

Figure 5: Sensor Position on Arm [WALD95] 0

D. SUMMARY

Issues concerning the modeling and tracking of humans have been presented. An

overview of graphic, kinematic and dynamic modeling methods was given. Considerations

for tracking humans, including motion tracker performance metrics, advantages and

disadvantages of various trackers, and the placement and calibration of trackers was

discussed. The chapter concluded with a survey of previous work related to this thesis. In

Chapter III, forward kinematics and the model developed as part of this research is
presented. 0

32

.4

.IL FORWARD KINEMATICS

4 The interface betwem the actual and virtual human maks use of both forward and

iverse kinematics. Inverse kinematics is used to determine joint angles from motion 4
tracking dat. Forward kinematics is used to render the graphics (in this case in OpenGL).

4 In this chapter, kinematics notation, modeling of the upper body, and implementation of the

model in OpnGL are discussed.

A. ICNEMATICS NOTATION
*Q

As mentioned, the two standardized and well known kinematic notations are the

Danevit and Hartenberg (DH) and the Modified Danevit and Hartenberg (MDH) notations.

The kinematic model using either of these notations specifically describes physical links

(rigid bodies) connected by single DOF revolute or prismatic joints. The links are

connected serially in chains or sometimes in tree-like structures. In both notations, links

and joints are typically numbered in succession from the base link or root outward.

Coordinate systems are assigned to each link via a standard set of rules depending on the

notation used. The DH and MDM notations are equivalent, with the exception that the link

frame of remf ce for DH links is attached to the outboard motion axis of the link, whereas

the link frame of refmce for MDH links is attached to the inboard motion axis. Joints in

either case are indexed based upon the frame associated with them. The MDH notation is

described here, though either notation can be used to model the upper body.

Figure 6 shows coordinate system assignment and the standard MDH parameters

associatd with links. The joint between linkI4 and linki is labeled joint i. The coordinate

frame for a link is fixed to the end of the link nearest the base. The z-axis of this frame lies

along the line of motion of the joint and the x-axis along the conmmon normal between this

joint axis and the next. If the motion axes of the inboard and ouboard joints intersect, then

33

*i

thex-axisisassgndpepedcua to the two. If the motion axes of the joints are parallel4

to each other, then the x-axis lies along a common normal between them at an arbitrary

location.4

ii*

Axi 0 I

* ~Figure 6: Link Coordinate System Assignment and MDH Paramneters [CRAI89]

There are four parameters needed to describe the relationship between the frame for

link,-, (denoted (i-il) and the frame for link1 (denoted (i)). link1 ..1 is referred to as the

0 inboard link and link1 is referred to as the outboard link. T7he four parameters are:

" inboard link length

a,-, z=distance from 2i-Ito 21measuredalong~i-

* *0 inboard link twist0

=m- -angle between Ii-I and 2i measured about li-I.

"* outboard link offset

di djdisance from I -Ito I imeasured along 2 30

"* outboard joint angle

e1 -angle bet .2 n I to Ik measured about 2

34

-M

* 9

These parameters are constant with the following exceptions: for revolute joints 6 is

variable, and for prismatic joints dk is variable. The model constructed as part of this

research only includes revolute joints (prismatic joints rarely occur in nature).

The anosfrmation between (i-1) and {i) can be represented by a transformation

matrix "T'. This is found to be the result of two rotations and two translations executed as

specified by the following equation:

1 T i= Rx(ai.1)Dx(ai.1)Rz(Oi)Dz(di) (eq. 3.1)

* where Rx(ai-1) is a rotation about the x-axis of {i-I} of ai.ldegrees, and Dx(ai-) is a

translation down the x-axis ai.I units. This equation is used for rendering links in their

proper position. As will later be shown, the translations and rotations are executed in the

* order specified by (eq. 3.1) to move from the frame of the link rendered to the frame of the 0

next link in the series.

An equivalent expression for (eq. 3.1), found by multiplying out the transformation

• matrices of (eq. 3.1), is [CRAI89]:

CO[ei -dnei 0 ai- 1
sh iM8(ai- 1) eC(eies(ci-. 1) -sim(ai- 1) -`h(ai- 1)di (eq. 3.2)TSi= n(c.i) a•eiD12(Xi_ 1) C(%_1) c06(ai-l)dI

* 0 0 0 1 j 0

An expression for 'r-1 can be found by calculating the inverse of (eq. 3.2) as

follows [MCMI96b]:

ai6 dameicm(ai_. 1) 'seidm(ai -) -a- 1c•e 1

'T iS = -•ei eGicJeoG(%_) imeias(ai-)) ai-isbei (eq. 3.3)S0 -Ws(ail -- (i_lI) --di |

0 0 0 1 J

35

*I

S S 0

T

Having described the MDH notation and the tasfomatns that relate one link's4

position to the next, it is now possible to describe the upper body model that uses this

0 notation.

B. THE KINEMATIC MODEL

The goal in creating a model of the human upper body is to provide a kinematic 0

representation of the salient features of human upper body anatomy and motion. Since

human upper body motion is defined largely by the amount of freedom of movement in the

human skeleton, the model can be designed with emphasis on replicating this structure. 0

Prominent structures include the spine, clavicles, arms and hands. The model provides only

an approximation of the movement of these structures, balancing the requirements for

accuracy, simplicity and speed of computation. 00
Figure 7 provides a sketch of one possible approximation of the human upper body

skeleton. The model uses multiple DOF joints attached by rigid links. The spine is

approximated by two three DOF joints placed at the waist and mid-torso. Though the 0

actual human spine is made up of numerous two DOF vertebrae, the two three DOF joints

allow the model to bend, twist, and lean in fashion similar to an actual human. Similarly,

the human clavicle is a complex bone structure which has been modeled by a single two •

DOF joint and its assocuted rigid link. This allows the model to move the shoulders up and

down or forward and back. The human shoulder is a ball joint and so it is modeled with a

three DOF joint. The human elbow can be modeled with a single DOF rotary joint as in the0
actual structure. Finally, forearm roll and the two DOFs in the wrist are modeled together

as a three DOF joint at the wrist. This provides for the three DOF normally seen at the hand

or end-effector. Taken together, the joints provide the entire upper body model 24 DOFs.

It is now necessary to define the model mathematically using the MDH notation. It

should be noted that multiple DOF joints can be modeled by chaining zero length and offset

36

5 00 0 0

*
9

* ®

*
0

* 0

Figure 7: Upper Body Model with 24 Degrees of Freedom

links. This places the inboard and outboard axes of motion of a link at the same location.

Threfore, the 24 DOF model requires 24 MDH links. The links in this case form two serial

chas and awe numbered starting from the base link at the wat.

Coordiniat sysems are assigned to each link in accordance with the rules

previously defined. Figure 8 shows the result of assigning coordinate systems. The z-axes

ae associaed with motion axes in accordance with MDH notation convention. In defining

37

4,'o
j s

=::: ;i•'••."•• •;•• :• • • . : ••;; ?i•,,•-•.-.. 4-..i.•-
'- : :. ,• " .

7

to Y19 12

1 17

I 517 16g

I '
0

ft Y13

I II

* I3
X14 13 '2

11 12

ý13 14 Y2

* SS

i-' 5 2

S

the MDH links, one must first decide the order in which motion axes are addressed. Once

the order of motion axes is determined, there are two choices for each z-axis about which

the motion can occur. The x-axes are also chosen in accordance with the rules previously

described.

Table 3 provides a listing of MDH parameters associated with the choice of axes in

Figure 8. Link lengths and offsets have been chosen somewhat arbitrarily to reflect the

proportions of a typical human. These lengths can be changed later when the model is sized

to the actual user of the interface. Link twists and joint angles are defined using their MDH

definitions and the right hand rule. The reference joint angle for each joint, e i, is that joint

angle needed to position the model as shown in Figure 3. Also shown in the table are the

desired limits of each joint angle. These were chosen to correspond roughly to actual limits

in human motion.

Note that this is one of many possible ways to define a kinematic model with the

DOFs shown in Figure 7. Different models result for a different ordering of motion axes. It

is sometimes necessary to redesign a kinematic model by reordering motion axes to avoid

singularities which can arise when computing inverse kinematics. This model has been

shown to work well with the inverse kinematics computations which have been

implemented here.

39

_ _ _ __ _ iii

mL t rId max a,

(deg) (cm) (cm) (deg) (deg) (deg)

waist twist 1 0 0 0 -90 0 90

waist bow 2 90 0 0 -270 -90 30

waist lean 3 90 0 0 -75 0 75

upper waist bow 4 90 17-5 0 0 90 180

uper wais twist 5 90 0 0 0 90 180

upper waist eI= 6 90 0 0 135 180 225

left shoulder curl 7 90 7.5 22.5 -30 0 40

left shoulder shrug 8 90 0 0 -20 0 50

left shoulder roll 9 90 12.5 0 0 90 180

left arm fare-aft 10 90 0 0 0 90 270

left arm side-side 11 90 0 0 -30 0 200

left elbow curl 12 90 22.5 0 0 0 170

left hand fore-aft 13 0 25.0 0 -90 0 90

left hand side-side 14 -90 0 0 -180 -90 0

left hand roll 15 -90 0 0 -90 0 90

right shoulder curl 16 90 -7.5 22.5 140 180 210

right shoulder shrug 17 90 0 0 -20 0 50

right shoulder ronl 18 90 12.5 0 0 90 180

right an fore-aft 19 90 0 0 0 90 270

right am side-side 20 90 0 0 -30 0 200 0
right elbow curl 21 90 22.5 0 -170 0 0

right haWd fore-aft 22 0 25.0 0 -90 0 90

right hnd side-side 23 -90 0 0 -180 -90 0

right hod rol 24 -90 0 0 -90 0 90 0

Table 3. MDH Kinematic Parameters
a. reltpoitiorit au shown in Figure 8

40

40!

* I

C IMPLEMENTATION IN C++

The kinemaic model was implemented in C++ using object-oriented programming 4
techniques. The C++ implementation of the model (forward kinematics) was used as a

prototyping tool to investigate inverse kinematics. Figure 9 shows the class and object V

hierarchy of the software. The C++ code can be found in Appendix A.

link

S / liji i N N N

* 4 '/ I N •
S / I X \

/ / I

Come dam

object obodt

mubu- - - -- -

Figure 9: C++ Class and Object Hierarchy 0

41
41

*,

• ,0' 0 4

The busic building block for the upper body structure is the linLk A link object 4
contains data members which include the four MDH parameters required to move from tie 4
previous link's frame to its own frame. This is accomplished prior to rendering the link.

This is shown in the code for the draw() member function of the link class in Figure 10. E
Forward kinematics are computed by mtting a link's joint angle and then executing the 1

0 code in Figure 10. Notice that this code results in the SGI computing the result of the matrix

multiplications listed in (eq. 3.1). Another method to compute the forward kinematics

would be to calculate the matrix found in (eq. 3.2) and then multiply the top of the OpenGL

model-view stack by this matrix.

Other data members in the basic link class include the joint angle initial (or

reference) position and the minimum and maximum allowable joint angles. Data members

which identify parameters for drawing the link as an eight-sided diamond are also included.

The 24 concrete link classes inherit these features, but are modified in two ways. First, their

constructors are made to instantiate links with the parameters shown in Table 3 along with

corresponding draw-parameters. Second, some link's draw functionality is modified to

accommodate special requirements for that link. In most cases links draw themselves along

the x-axis using a simple drawDiamond() function as shown in Figure 10. In some cases

this is not adequate. For example, the link6 class is responsible for drawing the head of the

figure (with nose), while the linkl5 and link24 classes must draw the hands with thumbs

(oriented initially along the z-axis). Notice that only links with positive lengths are drawn.

6 Links are put together in the upperbody class. The upperbody class instantiates link 0

objects of each of the 24 link types. The upper body is drawn by drawing each of the links

as shown in Figure 11. The order in which links are drawn is important Notice that links 7

and 16 both share the same inboard link (link 6), so it is necessary to push and pop the 30

model-view stack to draw links that form the right side of the upper body. The remaining

42

* e

0 0 0 0

void draw() .4
1gTranxlatod ((GLdouble) inboar&.link_length, 0.0, 0.0);

gIRotated ((GLdoublo) inboardtwistangle, 1.0, 0.0, 0.0);

giTranalated (0.0, 0.0, (GLdoublo) joint_displacoment);

gIRotated ((GLdouble) jointangle, 0.0, 0.0, 1.0);

if (draw.langth > 0.0)(

drawDiamond(0.0, 0.0, 0.0, draw-length, drawwidth,

drawdepth, drawoffset);

*)

Figure 10: Link Class Draw Member Function

functionality of the upperbody class is irrnplenunted in fashion similar to that of the

0 draw() function.

The body class object is made up of an upperbody object a lowerbody object and a

FastrakClass object. The lower body object is static, and is simply drawn as a unit in a

single position and orientation. The FastrakClass object provides position and'orientation

data to the body so that its upper body links can be drawn in the correct position. A

discussion of how this is done is found in Chapter IV. When rendered in it's reference

* position, the body appears as shown in Figure 12. The body is shown facing into the page 0

with thumbs forward and elbows directly aft. It is made of 86 polygons and serves to

provide visual feedback for determining the suitability of kinematics and calibration

* algorithnu. 0

D. SUMMARY

The chapter began with a discussion of kinematics and the Modified Danevit-

Hiarenberg notaion used in this research. This was followed by an explanation of the

kinmatic model developed. The chapter concluded with a discussion of the architecture

43

*

void Upperbody: :draw()

* //draw upper body so he's facing into screne
glRatated(90.0, 1.0, 0.0, 0.0);
glROtated(-90.0, 0.0, 0.0, 1.0);4

linkl.drawo; IIdraw each link, starting at the waist
link2.drawo;
link3.drawo;

4 linkd.drawo;

ljrxk6.drawo;
glPushlatrixO; IIafter drawing upper torso, remember where it was
link7.drawo; IIstart drawing left side from the shoulder
link8.drawo;
link9.drawo;
linklO.drawo;
linkll.drawo;
link2.2.drawo;
link13.drawo;
linkl4.drawo;
linklS.drawo;
glPopMatrixo; IIcome back to the upper torso
linkl6.drawo; 1/start drawing the right side from the shoulder

4 linkl7.drawo;
linkl8.drawo;
linkl9.drawo;
link2O.drawo;
link2l.drawo;
link22.drawo;
link23.drawo;

* ~link24.drawo;0

Figure 11: Upperbody Class Draw Member Function

of the C++ code used to graphically depict the model. In Chapter IV, Poihemus tracking

of the human body is discussed. The inverse kinematics required to determine model joint

angles and associated software implementations are also explained.

44

* 9

4
*

*

*

* 0

*

*

4 0

Figure 12: Body Rendea�d in OpenOL

* 0
45

* K
0 0

I.

464

* 0

* ' i i.,: !•:. .. - -:, s . ; ,:!, ••',i!',,, -7.•..•,,

Iv. INVERSE KIEMATICS

*nvers kinematics is used to determine the joint angles which position the modeL .

Poihemus Fasbt sensors re placed on the use's body in a manner that results in a

copletely specified system Inverse kinematic computations fall into one of two distinct

* types; those that use angle data, and those that use position data from the trackers. In this

chapter a brief overview of the Polhemus rtutrak system hardware and software setup is

provided. This is followed by a description of tracker placement Finally, examples of

angle and position tracking inverse kinematics computations are provided.

A. POLHEMUS TRACKING

The Polhemus 3Space Fautrak system is an electromagnetic tracker which provides
up to six DOF tracking data [POLH93]. As previously mentioned, electromagnetic

position trackers work on the principle that a magnetic field induces voltage in a coil. The

system includes a transmitter and up to four receivers which can be used for tracking. The
emi4er generates three mutually perpendicular electromagnetic fields. Each receiver

contains three orthogonal coils. Each coil generates its own voltage in the presence of the

electomagnetic fields for a total of nine voltages. The voltages generated are used to

determine the sensor's orientation. Voltage strengths of the transmitted signals are used to

determine the location of the receiver. The Fastrak system is an AC-based system, and as

such, tends to be more susceptible to ferromagnetic interference than a DC-based system

such as Ascension Technology's Flock ofBirds [MEYE92].

1. Hardware Ssep msd Device Drive

The Faotrk hodwe device driver, and their entation were nearly 0

ideu a to that used in [MCMJ96b]. A complete description of the hardware setup, device

47

2L

• - • .. • ' ' - • • ; • Jl l = "" I ' .. .•. ... J|..... .I.fl~ I 0l 0... iN l.

dmiwe system intaiain and system operaton can be found in [MCMI96b]. A brief

overview along with any differences in this implementation is provided here.

0 Figure 13 shows the Fasnrak hardware setup. In the center of the figure is the

Fastrak unit. The unit is interfaced to the SGI workstation via serial cable. A DB9

connector for the computer's serial port with pins connected as shown is used to allow for

0 software flow control. On the back of the unit are eight DIP switches used to configure the

unit's serial communication. The switch setting shown specifies RS232 9600 baud

connection with eight bits (no parity) and software flow control enabled. On the front of

0 the unit, ports for the four sensors and transmitter are provided. The four DIP switches on

this side of the unit are placed in the down position to enable all four sensors. Polhemus

provides two types of transmitters, a standard transmitter and a "Long Ranger" which

6 provides extended range (up to 15 ft). In this case, the Long Ranger was used.

uansnitter cable

Polhemus
SGI Computer Fastrak

Unit
(top view)

Long Ranger

seacable: seripot Rcvr 4

3-3 f Rcvr3

DB9 si r Rcvr2

Rcvr I

12 34 5 67 1 -2- -34

IhO Select SW Rcvr Select SW

Figure 13: Fasrak Hardware Setup [MCMI96b]

48

I0

The device driver can be found in the FastrakClass software in Appendix B. The

original version of the device driver was developed for the Isotrak by Sarcos, Inc. and later

revised at the Naval Postgraduate School [MCMI96b]. This version was modified by

McMillan in an attempt to develop the fastest possible interface between the Fastrak unit

and SGI workstation. McMillan found that most of the original functionality of the driver

was unnecessary. The previous system polled each sensor for data and could be

reconfigured during operation. Though extremely flexible in its utility, it was very slow.

He theefore discarded it in favor of a faster system. The result is a driver which, 1) allows

configuration only during initialization and, 2) sets up only one communication mode, a

mode not previously available. The mode allows continuous binary stream of data.

Fastrak initialization occurs when the constructor of the FastrakClass is called.

This happens when the Body class constructor is called. During the process, an ifstream

reference to the input configuration file is passed into the FastrakClass constructor. The

configuration file, called fastrak.dat, is found in Appendix C. It contains the parameters

6 needed to specify the configuration of the Fastrak unit. During initialization, the

constructor reads data from the configuration file, opens the I/0 port, configures the

Fa.trak unit, and spawns a process which will handle the continuous stream of data.
0

S During configuration of the Fastrak unit, a data link between SGI and Fastrak unit is

established. Parameters sent to the Fasrak unit from the SGI specify which receivers will

be used along with the data types to be passed and their format. In this case, all four

S receivers provide homogeneous transformation matrices (orientation and position) which

are passed using a 16 bit formt Parameters are also sent specifying what-frame of

refernce will be associated with the transmitter's antmnas. Figure 14 shows the frame of

r reference associated with receivers and transmitter. These frames are used in the inverse 0

kinematics computations.

* 0

49

0 0 0

Fiur 141onimSyw sinet oP~ mD~

actim th dFigue 14: ms Coordnate l Sytem maksgedta vial to toheu Devinces iato

programn. The driver nmus first query the port for available data. It then takes the data and

processes it by first identifying the sensor to which it belongs and then converting it to IMM

Floating point formaL T'he data is then placed in buffers for access by the application

Propul.

Figure 15 shows how daft is processed during continuous operation. After theV

serial port is configured during initializati~on, a function caied pollCouiiuuomudy() is

upro'ed. This fmunction calls dome function gedackut(continuously until its parent process

send a quit signal, at which time the functio is exitPed Mim ptdacket() function converts

t&e deft smem mo packets of dao& from each sensor. It does this by reading data fromn the

serial part int a temporary character buffexr md bdhr Ift then deaterines whether there

A.; Y0

is enoug daft to complete at least one entire packet of information from a sensor. If there

is, the packets are processed and written into a second buffer datarec buf. If not, then the

read times out and is tried again. During the procedure, data in the sream cycles

sequentially through the sensors and the getPaet() process must synchronize with it.

This is done by identifying a special set of header bytes which specifies a particular

sensor's data. Data in read buffer is discarded until getPacket() synchronizes with the

data str m.

Application

Device Driver \et-al~inpus

_ _
froz Fw*'nk LOCK, EI I ,fmm~uakSarilP•DeviceDriver I Applicatio

Buffers Buffer
ren_buof I daarecbuf Idmec

Figure 15: Software and Buffer Organization [MCII96b]

In order to ensure that the application does not access data while it is being updated,

transfer of data to the second buffer is protected by a lock and mutual exclusion. To

minimize access to datarec buf, the Body class function get an inputs() calls the

FastrakCass function eopyBuffer() to copy the entire contents of datarec buf into a third

buffer datarec. The getaninputs() function then calls the FastrakClass function

* 0

S.. .. ' il lll lil•

geftlMatrix() four times to acquire data for each sensor and place it into Body class data

mumber The data is then used by the Body class object to determine joint angles.

The use of the Body class get all inputs() function is the only difference between

this application of the device driver and the one used by McMillan [MCMI96b]. In

McMillan's application of the device driver a separate get_ ndtival() application function

was used to call getHMatix(. In both applications, getValLinputs() is called at the

beginning of each frame.

2. Tracker Placement

Sensor placement is determined by the requirement to have a completely specified

system. Use of six instead of three DOF motion trackers results in a less encumbered user.

The six DOF data from these trackers (position and orientation) can be used to determine

up to six joint angles without ambiguity if the position of the base or first joint is known

[CRAI89J. In the case of three DOF motion trackers (orientation-only trackers), only three

angles can be determined. This results in a requirement for a tracker to be placed on every

limb segment, or up to twice as many trackers.

a Optimal Tracker Placement

Figure 16 shows optimal positioning of the trackers for the model chosen.

The placement is optimal because it results in the fewest number of trackers being used to

determine all 27 DOF inherent in the model (24 joint angles plus the base position in x, y,

and z coordinates). Notice that six trackers are required, whereas only four are available

with the Polhemus system used. Notice also that trackers are placed on every other

physical limb, starting from the hands inward towards the base link. This is due to the fact

that the hands (end-effectors) must be tracked to determine their orientation. This cannot

be done by placing a tracIer on the forearm. The forearm joint angles, however, can be

determined from data from trackers on the hand and upper arm. The upper arm tracker

52

* - 0

S * 0 0

provides information on the position of the elbow joint. This information together with

position and orientation information from the hand sensor is adequate to determine the

elbow angle. If the upper arm sensor is removed and placed on the clavicle to provide

position information on the shoulder, then information from the hand sensor is required to

determine seven joint angles between it and the shoulder. The result is an infinite number

of possible solutions since the system is redundant. A similar logic is used to determine

remaining placement of trackers on the upper torso and on the pelvis just below link1. The

pelvis, or base link, is considered linkO. The tracker on the base link is the reference tracker

for providing lower body position and orientation. All joint angles are ultimately

determined relative to this base (frame (0)) position and orientation.

motion tracker

20

0

0Figure 16: Optimal Motion Tracker Placement

53

K... . . o0 0 0 •

b.Acual Tracker Plafceuvnt

Figure 17 shows the actual tracker placement used in this research. This

tracker placement was chosen to investigate angles-only tracking techniques involving the

lower waist and right shoulder, elbow and wrist Following the angles-only investigation,

an investigation of position tracking of the right clavicle was conducted using the torso and

upper arm trackers.

nn I

nn I

*motion tracker

Figure 17: Actual Motion Tracker Placement 0

Tracker locations and methods of attachment provide for two key

considerations. First, tracker position is reasonably stable relative to the underlying bone

sucure throughout the range of motion. Second, the equipment is easy to don. The upper

arm and lower arm sensors were placed near the elbow and on the wrist by means of elastic

54

* 0 0 0

I

velcro straps placed either directly on the arn or tightly over clothing. These locations E
provide the least amount of relative motion between tracker and underlying bone structure

due to the muscles of the am. The hand sensor was sewn to the back of a glove worn on

the hand. The torso sensor was originally worn on the back using an elastic harness

comprised of two loops through which the user placed his arms, the method used in

[MCMI96b]. This placed the torso tracker directly between the shoulder blades and

approximately in line with the two shoulder joints. It was found, however, that movement

of the clavicle of either shoulder caused considerable movement of this base tracker relative

to the back. This resulted in skewing joint angle computations. Movement was due to the

close proximity and motion of the shoulder blades. For this reason, an alternative method

for attaching the torso sensor was investigated. Figures 18 and 19 show sensor attachment
*0

and the new harness. A discussion of the effectiveness of the new harness can be found in

Chapter VI.

m~iiil .. •

Figure 18: Polbemus Fastrak Sensor Attachment - Arm Sensors

3. Trandfraiing Tracker Data S

As discussed in Chapter II, the first step in using Polhemus tracker data to determine

joint angles concerns transforming data on the tracker's position and orientation into data

55

* 0

* .. .0 o _ . o j0.. .. 0 • . .

4 0

... 6..

a) Front b) Back

* Figure 19: Polhemus Fastrak Sensor Attachment - Upper Body Harness 0

on the tracked limb segment's position and orientation. Figure 20 demonstrates how this

is done. If the limb segment is treated as a rigid body (ie. tracker placement is such that the

underlying bone structure moves very little in relation to the tracker) then the relationship

between the tracker's frame of reference and the limb's frame of reference is constant and

represented by the following:

W'HI = 'tHI (eq. 4.1)

In this case, the goal is to determine the homogeneous transformation matrix representing

the limb's position and orientation in world coordinates, 'iHI. Recall that the world

coordinate system is attached to the transmitter's antennas (Figure 16). wH, is the

homogeneous transformation matrix reported by the tracker relative to the world coordinate

• system. 'Ht is the homogeneous transformation matrix specifying the limb segment frame 0

relative to the tracker's frame and is constant. This can be found using a calibration

56

* 0mm mm•m- mmmmmm m• "..

pocess. A mire complete description of this process is contained in Chapte V. tH1 can ". 4
dm be used to transfom tracker data into limb segment data using (eq. 4- 1).

Limb

Co)on,,..I oatemt

* -- egumet 4 J•l

systemW
'a'

Cooodin ate >

SAr

Tracker
Coordinate
system
(t)

* Figure 20: Relationships Between Frames of Reference

B. INVERSE KINEMATICS

* The remaining inverse kinematics computations for determining joint angles fall

into two categories, those that use angle or orientation information from the trackers, and

those that use position information from the trackers. In general, orientation data is used to

Sdetermine joint angles associated with the physical limb on which the tracker is mounted.

Position information is used to determine joint angles associated with physical limbs which

do not have trackers mounted on them. An example of each type of calculation is provided

* ~herm

* 0

57

• -T*f

L IbgAM&Data 4
The firs example shows how joint angles can be detemined from tracker

orientation data. In this example, tracker placement is assumed to be optimal (Figure 16).

The actual implementation found in Appendix A uses a similar technique and is explained

later in this chapter.

The goal is to determine the three joint angles for the shoulder using orientation data

from the trackers. For a tracker placed on the right upper arn, the tracker data can be

transformed into a homogeneous transformation matrix defining link20 position and
*O

orientation in world coordinates, or H20. Additionally, H20 is represented by the following:

H20== Hbody 0 r 1lT 2
2T 3

3 T 44Tr5 rT66rI6r 1 7 T 8l T 1 9 ' 9 T20 (eq. 4.2),

where Hbody is provided by a motion tracker on the base link, or linko. The T- matrices are

determined by using (eq. 3.2) and the parameters for each link found in Table 3. f the joint

angles for links in the chain up to the three links associated with the tracked limb have been

* previously determined from intermediate tracker data, then

0T17 = °T 1
1 T 2

2T 3
3T 4

4T5"FST6 16
16T 1 7 (eq. 4.3)

is known. Rearranging (eq. 4.2) to place the known quantities on the left side of the

equation,

17T0 (HIbody)" H = 17T12 18gT19
9T20 = 17T (eq. 4.4)

where 17T0 is the inverse of GF17. Using the tracker data and known joint angles, a 4 x 4

matrix of data representing 17T20 can be calculated. Again, by using (eq. 3.2) it can be

shown that by multiplying out the T-matrices 17T1s, 8T 19 and 19T20, that 17T20 is:

58

/°

* 0 0

C18C19C30+4 f * CISCp ft 58 AC2 0 CS5, 01
* r1T = 5 i 5 u C 9 01 (eq. 4.5)9

20swc ISCO3-Ci C3 Ugg*CI*gs- CISCp 'S~ISS 01*[0 0 0i 1
wbvenodos sch as IssinS Ol UK! cjs cos w~ ae wsed. The was now becomes

A, B, C, DI(e.46
17T (H~dy'I H2= [2 B2 C2 D21

LA4 64 C4 D4]

uin e 4;+ ' (eq. 4.7)

sin e1, (eq. 4.8).

Sinc normally 0 <81g< 180 degrees, sin is chosen to be positive. The three

angles associated with this solution can now be found as follows:

,91,)= atan2 (sine19, C2) (eq. 4.9)

*e30= atan2 (B~IinbO1 , -A21smnelg) (eq. 4.10)

0j,- atuan (C3 /iwne, c1Isine,,) (eq. 4.11)

There we two probienu which may be encomntred with this general type of

soluton. The firs concerns fte fact that sine1, may equa zero. In this case, a singularity

has been encountezed and joimt~s and jointio axe of roation wre in line with one another.

Cue be ohm so thatd model is desine such d-- for the suwn or referenc

poiion 8) ths does not occur. However, the -a may be en[2 after

Uackin comme• nces 7b re e two posb•d for hn dli this Mwtirst is avoiac.

When sine,, nears z=r simply set it to soae ariraiy small value. If, however, die

application demands that the singularity be reres•eied moe accurately, the method

described in [MCMI96b] can be used. In this case, set either el, or e2o to its previously

known value and then solve for the other angle. This can be done by noting that

cos e0, =1. Then 0

A, = c 18C20+sISs 1- 1(O18_20) (eq. 4-12)

A3 = SlgC2 -cISs - -da(els-e2) (eq. 4-13)

and
A3

e- = atm (eq. 4-14).

Perhaps the best method of handling singularities, a method not used here, is to

design the model so that singularities are never possible. This can be done for three DOF

joints by reordering the axes of rotation to ensure that the second axis of rotation can never

be rotated to align the first and third axes of rotation. For example, if the first and second

axes of rotation in the model used here (lower body twist and fore-aft bending at the waist)

are switched in order, then no singularity between the first and third motion axes is

possible. This is due to the fact that humans cannot twist the full 90 degrees required to i

align the first and dird axes.

The second problem concerns the cae where e19 is not limited to an angle between

0 and 180 degrees. In this case sine,, can become a negative number. A method for

60

*-t

dWmuISu Wbm dthe alM ha moved beyond tis ne of motion is required. N 018 is

coamid to bc batwe 0 and 180 dqees, dm sign of C3 is ft sw nas the sign

of uneO,. Insuch acUe, a neMavevalue fOrC 3 ibdkafX that 9a is no longer between

0o ad 180 degrees. The result of (eq. 4.7) or (eq. 4.8) is threfore chosen to be negative.

2. Usig Ninhiem Daba

To demonstraft how position data can be used to deterine joint angles, the method

for deftrmining the clavicle joint angles e6 and e07 will be described. Figure 21 will beI@

used to show how this can be done. The goal is to detemmine the position vector between

the clavicle and shoulder joints. This can be done from position and orientation data given

by the irackers on the back and upper arm. This vector is then used to detemine the

necessary joint angles.

The first problem is to determine -P16.Is , the free vector in world coordinates

describing the rehtfive positions of joint1 6 and jointI8. Figure 22 shows the vectors needed

to accomplish this. Once again, one makes the assumption that the trackers are attached to

links that are rigid bodies, and that the relative motion between tracker and link is nil. With

this puMP60on, "P,. Ethe position ofjoint1 6 relative to the torso sensor or tracker, and 0

"Ppe.in, the position of joint18 relative to the upper arm sensmo, are constants which can

be determined through calibration. Nf l*p. and "p. position vectors wre provided by the

trackcers then

"P".'Pis + P, + W P,,, (eq. 4.15)

and 0

UP., = "p.. + wR, p,.,, (eq. 4.16),

61

S. •• ..•.. . •, •ilT•III" : , ' " :I•'!I " .

* K.
who Wic and w~mw an roaion matrices provided by die tracm Owce Wp~and4

Sare found, 'P'.p can be detenined from de fonlowing relationship:

., . - Pj,.a , (eq. 4.17).

Coordinate
SystemO (w)

* A•

* F•ur 21: Clavicle Position Tracking•

62

*w

- " .0,• ",

• ey,• po • PJ.,..,1, and WP.,z can also be calcuatd using..IEquivalently, the position vectors -j.6adcnas em ae sn
Ii

"" transfrAtion matrices. N *Uts and "HW are the homogeneous

trnsfomaon marices provided by the trackers, then calibration can provide the constant

n1'k"esIlipoSUl 6 aEd *"HPO•.s which can be used to transform positions reported at the

. trackers to the positios of joint16 and joints in world cordinates. This is accomplished

using the following relationships:

'FI•16 =*]His 'H•1ýý (eq. 4.18)

• WlF1ýIgo•I =WUua u'IpOojtlS (eq. 4.19) •

In this case, the position vectors and rotation matrices previously described can be found

in the homogeneous transformation matrix with the same sub/superscripts.

Now that P,6,,,s has been determined, it is necessary to describe this vector in

coordinates relative to a coordinate system attached to the upper part of the torso. This is

* necessary since the angles that need to be determined, e,6 and e, 1, are used to position the

clavicle relative to the torso. The homogeneous transformation matrix H6 is the position

and orientation of the upper torso (specifically link6) in world coordinates. This has been

* previously determined from the tracker on the upper torso. The rotation matrix R6, the

orientsAon of the upper torso given in H6, is needed to transform wPIho. into a vector

relative to the upper torso. This can be done using the following equation:

(POI= 0R") WP1 (eq. 4.20).

The joint angles can now be determined directly from the coordinates given in

• P16,u,0 using trigonometry. fx, y, and z are the coordinates of P1teos, then 0

= atan2 (z, x) (eq. 4.21)

63

.0i°

* .

ep -=t=2 (.. -+Z) (eq. 4.22).

Mh rMl of (eq. 4.22) nAst be normalized to a positive angle for use with the knematic

model

SIt should be noted that the position tracking ftclmkiue shown here is only valid for

determining up to two joint angle. If the physical limb being tracked can change its pitch,

azimuth and roll, then there is no way of determining dhe roll frmn a position vector

* generated by this technique. This is due to the fact that the position vector generated is

parallel to the axis of roll. Only limb azimuth and pitch can be determined. In the case of a

thre DOF limb, it is still possible to determine all three angles. Pieper investigated inverse

* knematic solutions for six DOF manipulators where three consecutive motion axes 0

intesct [PIEP68, PIEP69]. His solution for manipulators where the last three motion axes

intersect is appropriate for determining el, 02 and 03, given the optimal tracker placement

4 shown in Figure 16. A description of this technique can be found in [CRAI89].

3. 11 Spedflks,

There are two impm ons which were investigated. Each uses the techniques

shown in the previous two sections to determine joint angles or track positions.

a. Am•nl-only 7n lmpemeutioe

In the angles-only ng implemen tion, he objective was to

demonstrate that four sensors could be used to fully articulate one arm while at the same

time tracking the tmo position and rientaioa. Though not opmal, this provides a usable

solution, for the um is able to move aound the virtual environment and use one arm. Since

only tracker orientation data is used, many of the joint angles of the upper body model ar

not arficulaed. Table 4 shows the joint angles that re computed. The code for calculating

64

* @_

p * •

the joint angles can be found in Appiendix A in the aku~kejoi~t uag1*(function of

die Body class. In all, 13 DOF we tracked with this solution.

A major difference between this Impeetto and the optimal

impkn~tWon concerns the placement of the base tracker. The base tracker is positioned

an the upper torso as in Figure 17, instead of on the pelvis. Since thee is no trackding of the

lower body, the lower body is not rendered or displayed. The thre joints located at the

upper-waist position e4, %~ and am w fixed and allow for the entire back to be treated

as a rigid body. SIince this is the case, the position tracking techniques described in

section 2 above can be used to determine the base position of the upper body f~rom the

position and orientation data of the torso sensor. The upper body is trnuslated to this

position before it is rendered. Angle tracking techniques from section 1 above are then used

to determine joint angles given in Table 4, the only difference being that joint angles which

are fixed (ie. not tracked) result in constant T-tiatrices.

JohdAnge Idex raders TypeB, JintAnNe Inex aciersComputation

waistist tors Wo anl

waist bow 2 torSO angle

*waist lean 3 INo angle

rightsoukler rol 1s upperarin angle

rgtW arm fore-aft 19 upper am angle

rigt sid e-sid 20 - upperum angle

ti&h elbow cot 21 lowerarm aUsl
rig htand fore-aft 22 hinndanl

right bhand sidle-side 23 hand angle

* ight hand roll 24 bondagl

Table 4. Joint Anghu Conqiused - Angles-onlyIpmumtto

65

In the position Uacking implon, the objective was to demonstrate

position tracking of the right clavicle. The code for calculating the joint angles can be found

in Appendix D in the revised calculatejimttangles() function of the Body class. Table

5 shows the joint angles that are calculated. The computations used to determine e,, and

e17 , are exactly those shown in section 2 above.

Joint Angle Index Tfrackers

Computation

waist mwist I xt angle

waist bow 2 torso angle

waist lan 3 tsoangle

right shoukler curl 16 torso & position 0
upper ann

right shoukler shrug 17 torso & position
__ _ _upper armn

Table 5. Joint Angles Computed - Pesition Implementation 0

C. SUMMARY

In this chapter the Polhemus tracking hardware and software were discussed. The

inverse kinematics computations were also presented. It was hoped that success in tracking

the clavicle would result in an attempt to use position tracking for determining the joint

angle for the lower arm. This would result in progress towards the optimal tracker

placement shown in Figure 16. This was not the case, however, due to limitations in tracker

hardware. A description of results is contained in Chapter VL The next chapter, Chapter

V, discusses methods used to calibrate the system.

66

.•0

6 9 9 0

0

V. CALIBRATION

In this chapter a discussion of the methods used to calibrate the sensors and size the 0

kinematic model to the user is provided. The goal of this effort is to make the calibration

process simple to use, yet sufficiently accurate to permit the user to effectively interact with

his virtual environment.

A. CALIBRATING SENSORS

The first step in using Polhemus tracker data to determine joint angles is to

transform data on the tracker's position and orientation into data on the. iLacked limb

segment's position and orientation. If the tracked limb segment is treated as a rigid body,

then it can be assumed that movement of the tracker relative to the limb segment is nil. This
0

assumption is only valid if, 1) the limb segment's frame is attached to the underlying bone

structure of the limb and, 2) the tracker is attached to the limb in a manner that minimizes

its motion relative to this same bone structure. This can be done by attaching the tracker at

a location where there is little muscle or flesh matter between the skin and underlying bone.

Once the tracker is properly placed, it is the purpose of calibration to determine the constant

4 x 4 homogeneous transformation matrix which describes the relationship between tracker

and limb segment. This information can then be used to transform tracker data into limb

segment data.

Figure 20 and (eq. 4.1) are reproduced from Chapter lV and provided below as

Figure 22 and (eq. 5.1). They describe the relationships between the world, tracker and

limb segment frames of reference.

'HI = HIHl (eq. 5.1)

The goal of the calibration process is to determine tHl, the homogeneous

transformation matrix specifying the limb segment frame relative to the tracker's frame.

67

Coordinate4
system -iltaWorld
9} • • Coordinate

/

1'11Wl'[

motion
Tracker
Coordinate
system
(t)

Figure 22: Relationships Between Frames of Reference

This can be found by placing the limb segment in a known reference position (ie. -"HI is

known) and measuring tracker position and orientation, Wi'l at that time. Then, (eq. 5.2) 0

can be used to compute t 1i, the desired constant transformation matrix.

(W4l)" w*I = IHwWI1 %I, (eq. 5.2)

1. Angles-only Calibration Technique

If one intends to only use orientation data for determining joint angles, then the

calibration process is simplified. In this case only reference orientation is used, instead of 0

orientation and position. The limb segment need only be placed in the specified

orientation. Additionally, position elements of the homogeneous transformation matrices

given in (eq. 5.1) and (eq. 5.2) may be ignored, giving the following: 0

"*RI= *Rtt, (eq. 53)

and

68

0

(wRI)-'RR, t RwwR (eq. 5.4).

For the angles-only implemetation, the reference orientation is that shown in

Figure 8. In order to position himself for calibration, the user needs to match his body I -

position as closely as possible to the reference position. This is done by standing straight

up and down and placing the right arm straight down with the thumb forward and elbow

locked. The user must stand facing in the direction of the world coordinate system x-axis

with his right shoulder aligned with the world coordinate system positive y-axis as shown

in Figure 23. Calibration occurs after sensors are initialized on program start-up. The user

is prompted from the screen to position himself and is given three seconds to do so after the

"enter" button is pushed. At that time, sensor data is taken and the calibration

transformation matrices are computed in the calibrate() function of the Body class. These

matrices are then stored for use in their corresponding Body class data members.

2. Position Calibration Technique

The position calibration technique is similar to the angles-only technique with the 0

exception that initial tracker and limb segment positions relative to each other and the

world coordinate system becomes important. The calibration position used, however, is

identical to that used in the orientation calibration technique. Figures 23 and 24 show the

required positioning for calibration of the torso and upper arm sensors used to investigate

position tracking techniques. As with the orientation calibration technique, the user must

stand facing in the direction of the world coordinate system x-axis with his right shoulder 0

aligned with the world coordinate system positive y-axis as shown in Figure 23.

Additionally, the toiso sensor is mounted such that it is at the same world coordinate z-

coordinate as the shoulder and clavicle joints. The upper ann sensor is mounted on the arm 0

so that it is at the same world coordinate system x-coordinate as the shoulder and clavicle

joints. Positioning the body and sensors in this manner allows reported sensor positions to

69

*. ,.

be used in a sbile and direct manne for detmaining joint positions. A more detailed ,

exp•aion follows. jl

a

•

•0

joint

__

!

Figure
23: Tracker

Position
Calibration

- Front View

The purpose
of position

calibration
is to. determine

the position
of a joint relative

to

0
the sensor w hich w ill be

tz'ackting it. In the position tracking application
investigated

here,

this m eans dete
miig the constant

vectors
'spps,l,1 and

*Ppo,,inl (see Figure 21). These

Svectors are then inserted
into

Ux4 unit
marcs to create

'IHpo.a16 anid n'I~posg
which are

•

uise d i n (e q . 4 -1 8) a n d (e q . 4 -1 9) t o c o n v e r t re p ore d s e n s o r l o c a t i o n t o j o i n t l o c a t i o n . O n c e
!

•

70

*..

,:.:,,:,:
,i ":-- :

,.,. ;':.... ...:'7" : ,4

,,6•.
.

. .
.. :':'-.

'',,":,
.

' .

• . • ', " / :• .!

. /: , ,:,

.-
,

""Ii,...=

* z-ag ,-i

(9joint
* sensor

Figure 24: Tracker Position Calibr-ation - Side View
* 0

ioint locations are known, the inverse kinematic conmputations described in Chapte'r IV can

be accomplished.

Mesrmnst eemn po,0 g, 16 and Poi are first taken with reference to•

the world coo~rdinate system. The vector from the torso sensor to the clavicle and from the

upper ann sensor to the shoulder joint are mesue with reference to the world coordinate

m ~system. This is done by using the sensors themselves and by manual means. These vectors .

can be called =p.. and =p.••• since they are measured relative to the world

coordinatesystmn or the trasmiuer frame of reference. Figures 23 and 24 show how the

•varous compoxnet of these vectors ardermined This is done as follows:

• •_.• x-cocmdinae - determined by taking the differnc betwee di epre x-
coordinat of the upper am sensor and the reported x-coordnate of dhe torso sensor.

* 0

71

* 0

" . y-coordinate - this measurement is taken manually by estimating the center 4
of rotation of the clavicle joint and measuring the distance to it in the y-direction.

_._d6 z-coordinate - since the torso sensor is at the same z-coordinate as the 0
clavicle joint, this coordinate is set to zero.

* p..,_..._,8 x-coordinate - since the upper arm sensor is at the same x-coordinate as
the shoulder joint, this coordinate is set to zero.

• P._ y-coordinate - taken manually by estimating the center of rotation of the
shoulder joint and measuring the distance from the spine to it in the y-direction. The

difference between the reported y-coordiate of the torso sensor and the reported y-
coordinate of the upper arm sensor is then subtracted from this distance and assigned
a negative sign.

• _• z-coordinate - determined by taking the difference between the reported
z-coordinate of the torso sensor and the reported z-coordinate of the upper arm sensor.

The manual measurements associated with the y-coordinates of each of these

vectors were taken and hard-coded into the calibration routine for a single user. This can 0

be seen in the code of Appendix D and was done for testing only. The manual

measurements taken here must correspond with those taken for sizing the model to the user.

In particular, the measurements and computations which result in the spine-to-shoulder- 0

joint length and the spine-to-clavicle-joint length (the link6 length) must correspond to

those input or computed when the kinematic model is sized. Model sizing is discussed in

the next section of this chapter.

Once -Pt_,..jd and "p m 5. have been determined, it is necessary to convert

these vectors into "P,.o,,, 6 and P•peots respectively. This is done using the following

equations:

"P,.,,a = (RO)" Upmao.,a_ 6 (eq. 5.5)

""Oa,,s = (ft,,)"l I"p--_.., 8 (eq. 5.6)

where 1R, and "R 1, are taken from M'H, and 41.. as reported by the torso and upper arm

sensors at the time of calibration. As previously stated, the constant vectors "Ppo,,,1 and

72

*r

*I

P'p•,,, ..uia thensed into 4x4 unt matrices to ar, and o18 aan the
calibration process is completed&

B. SIZING THE MODEL

In order to ensure that the user can effectively interact with his virtual environment,

* ~the kineutic modiel is scaled to the user's dimensions. This results in a virtual human who

is proportional in dimensions to its user. That way, when the user touches his right shoulder

with his left finger tips, the virtual human does also. Thus, scaling the user's dimensions

into the virtual environment is desired t.n enhance the perception that the user himself is 0

immersed in the virtual environment. It also means that each virtual human can be scaled

appropriately to objects found in the virtual environment, objects with which the user may

want to interact. 0

The method for sizing the model to the user is straight-forward. Prior to system

initialization, the user's measurents in centimeters are taken. These measurements

include: 1) the spine to shoulder joint length, 2) the upper arm length, 3) the lower arm 0

length, and 4) the hand length. Meurements are taken by estimating the center of the

joints in question. During calibration, the user is pronmted for these measurements in the

caibrae() function of the Body class. 0

Following input, the code shown in Figure 25 is executed to set the appropriate link

lengths and joint offsets to size the modeL Notice that the input spine to shoulder length is

used to set the link lengths for links 6,8, and 17. These correspond to the distances between 0

the spine and clavicle joint on each side,. and the left and right clavicle link lengths

respectively. To do this, the clavicle position is arbitrarily assumed to be aproximatly

36% of the disnmme from the spine to shoulder away from the spine. The clavicle lengths 0

then become 64% of the manual measurement. The code is written so that setting the link

length for link6 aummadically causes the inboard link lengths for link7 and link,6 to be set

* 7
73

* .0

* .~ ..

acmlnl.This occurs inm athe . mkeqgth()member fntoofdeUpperbody

class which is Called by the Body class member function of fth same name. Mwe link length

4 ~of link3 and joint divsplcement of joint1 6 are hard-coded to arbitrarily set fth size of the

bck~ since traicking actually occurs at fth torso sensor located between the shoulder blades.

Setting the joint16 displacemient in the Upperbody Class Member funiction

uetjeiat~diSPlacmemt) automnatically sets the joint6 displacement and vice-versa, since

the two are identical.
e

IIset upperbody dimensions to that of the user
set-link...longth(3, 21.0);
set_link...length(6, 0.36 * spine~shoulder-length);
set...joint~displacement (16, 26.0);
set_linK..1.ngth(l7, 0.64 spine shoulder...length);
set-link...length(8, 0.64 *spine..shoulder-length);

set_link..length(20, uaraxlength) ;
set_link..length(ll, uarni-length) ;
set-link.length(21, larrm.length) ;
set-link...length(12, larm...length) ;
set_link..length(24, hand-length);
set-link...length(15, hand-.length);

Figur 25: Excerpt from Body Class Calibrate Member Function

Admittedly, the method chosen here for reducing the number of measurements Will

in some cases result in an unacceptable match betweca the model. and user with respect to

clavicle joint location. A better method would be to submit individual mesrmnsfor

the joint displacement and clavicle length, rather than linking the two to a single input.

Since the clavicle joint is not a rotary joint which can be specifically located, approiatn

its locazion is necessary in any event. Thle method chosen here was found to be acceptable

for mosching the model to the user in a manner that permitted gross motor control of the

clavicle for testing purposes

74

C. SUMMARY

Calibration of the tracking hadwar and software model were discussed in this

chapter. The relationships between the world coordinate system, tracker coordinate

SYStm and coordinate systems attached to the skeletal structure were presented. Tracker

positioning for calibration of angle and position tracking methods was also discussed. The

chapter concluded with an explanation of how the software model can be scaled to the user.

The next chapter presents observations concerning the effectiveness of the interface as a

whole.
75

* 70

* 0

4

1 4
*

*

*

*

0

*

* 0

* 0

* 0
76

* 0

...*,.,v* '

� -, '9'

VL RESTS

S The interface described in this thesis was investigated with regards to the three

ma=jr goals for this project discubsed in Chapter L First, the interface needed to be

effective in driving realistic and reasonably accurate movement of the virtual human.

* Second, the interface needed to be efficient enough to ensure that all actions commanded

occur in real-time. Third, the interface was to be intuitive and easy to use. The

investigation was more qualitative than quantitative due to a lack of hardware for

Saccurately measuring the user's movements (determining truth values) for comparison with

movements the system actually produced. Despite this, there are some observations and

conclusions worth noting. This chapter provides observations concerning each of the thesis

* goals. The next chapter presents conclusions drawn from these observations and discusses 0

fuatre work which can be done.

A. REPRESENTATION OF HUMAN MOTION1. 0

The system is required to replicate the user's movements in such a way that the

motion is realistic and accurate. In this section, realism and accuracy are discussed

concerning the angles-only implementation and the position tracking implementation.

Results described here can be found in Appendix E, a demonstration video of the angles-

only and position implementations of this interface.

1. Augle-only Inplenietation S

The realism required should be sufficient to make the user and any other observers

believe that the virtual human represents an actual human in motion. If measured by this

• standard, then the angles-only implementation can be termed successful Figure 26 shows •

operation of the angles-only tracking implementation. The system tracks thirteen degrees

of freedom, including a six degree of freedom torso (position and orientation) and one

77

0 ...

I

Figure 26: Angles-only Tracking Implementation in Operation

seven degree of freedom arm. The virtual human's movements smoothly track the user's

movements. They are easily identifiable as being those of an actual human by virtue of the

subtle coordination of movements typically associated with certain human behavior. An

tl example is walking. The lean of the figure's torso, bounce in the figure's walk and

corresponding stretch of the arm give a life-like and realistic flavor to the replicated motion.

The accuracy of motion replication is more difficult to judge. In attempting to

II determiine the accuracy of the representation, one must first measure the actual posture

(including such metrics as end-effector position and joint positions and angles) and

compare this posture against the posture rendered at sampled times throughout the
4 7

4 0

b._ • •• •.• • •0

movenmL This is a large and diTicul undertaking. It involves double instrumentation and

rackin of the user in a nman that insures one traciug method does not interfere with

the other. For exanple, mechanical trackrs which are made of metal may interfere with

the electromagnetic trackers used in the interface. For this reason, the methods for

deermnining the accuracy of the system were more subjective and narrow in their scope.

There were two types of tests used to determine in a limited fashion whether or not

the system was accurately tracking the user's movements. Both involved statically

positioning the user. The first involved observing correlation of joint angles when p!aced

in either 90 or 180 degree positions. In general, this test resulted in visally acceptable

angles being generate& The second test observed the ability to position one body part on

another, such as placing the finger tips on the shoulder or to7 " g the chest with the palm

of the hand. The results of these tests, while not perfect, were encouraging. Several

corrections to the system were made (described below), resulting in somewhat improved

performance. A mrore detailed discussion follows.
The accuracy of the duplicated motion is dependent on several factors. The first is

the ability of the electromagnetic tracUks themselves to accurately report their position and

orientation throughout the working volume. Polhemus reports that the static accuracy for
0

a receiver positioned within 76 cm (30 in) of the transmitter is 0.15 degrees RMS for

receiver orientation [POLH93]. Operation beyond this range or in the presence of

ferromagnetic interference will reduce accuracy. Since the transmitter's antennas are

mounted to the ceiling and the user moves freely about it, actual operation is often beyond

this range. Also, the environment in which the device was tested had numerous objects

which could cause ferromagnetc interference, including metal light fixtures, a metallic

drop floor and the computer and monitor used to run the interface. If a hypothetical case is

considered where all four sensors are within 76 cm of the transmitter's antennas and the

user's spine to finger tip length is 90 cm, and if the arm and hand are extended straight out

79

0 S

S".. , _. .

to the side and all four sesosn are offby 0.15 degrees in the same direction, then the hand's

orientation would still only be off by 0.15 degrees with an accumulated position error of

aplroximately 0.24 cm at the finger tips. However, given the working environment and

test results, it is likely that the errors are greater.I

Livingston and State investigated the registration of electromagnetic trackers at the

University of North Carolina [LIV196]. Though they used Ascension Technologies Flock

of Birds trackers, their work illuminates the inaccuracies inherent in today's

electromagnetic trackers and shows the difficulties which must be overcome to improve

registration of these trackers. Th~er orientation error data for a single Flock of Birds sensor

(less sensitive to ferromagnetic interference than Polhemus) was taken in a spherical

working volume of two meter radius in a similar environment. Using 11,419

measurements, the data shows an average error of 3.34 degrees with a standard deviation

of 1.31 degrees and recorded minimum and maximum errors of 0.13 and 20.46 degrees

respectively. If we apply the average orientation error in their findings to the example

above, then the accumulated position error of the finger tips now becomes approximately

5.28 cm. This error is noticeable in some applications. It may explain in part why

positioning the hand over or touching other body parts sometimes resulted in a perceptible

disconnect between reality and the virtual representation. On the other hand, it can be

difficult to observe only three degrees of error at any given joint angle. This may explain

why errors were not as noticeable using the 90 degrees joint angle test.

Another cause of inaccuracies is the motion of a tracker relative to the underlying

skeletal structure which it is tracking. During testing, it became evident that this was in fact

the case for the torso sensor. Motion of either clavicle would cause the harness on which

the sensor was mounted to move, moving the sensor relative to the spine. This was due in

large part to the motion of the shoulder itself and the shoulder blades around and on which

the straps of the harness rest. Unfortunately it is difficult to keep the clavicle immobile

8o

&gig A0

whle moving the amrm This resulted in a noticeable tilt in the body position from the 4
vertical when the arm was raised. The rest of the tracked limb segments (arm and hand)

retain the prop orientation relauive to world coordinates due to the manner in which joint

angles are calculated. If the torso sensor is held in position on the spine by another

individual, then the represented body orientation and posture is much closer to reality. To

improve torso sensor tracking a new harness was designed. The new harness utilized a

single strap suspender design with shoulder straps splitting high up the back and running

as close as possible to the neck. The straps were then crossed in front and attached to a belt

wrapped around the torso just below the waist. This helped avoid much of, but not all, the

movement of the sensor when the clavicles were used. Similar problems were not observed

with respect to the remaining limb segment trackers.

Infidelity in the model chosen can also cause accuracy problems. Since the clavicle

was modeled but not tracked, the effect is as though it was not modeled at all. As

previously mentioned, it is difficult to move the arm without moving the clavicle associated
• 4

with it. For movements such as scratching one's back by reaching up and over the shoulder,

large amounts of clavicle angles are induced (depending on the individual user). This

results in a loss of correlation between reality and the representation. In effect, the

reachable workspace of the user extends beyond what is reachable for the model. For

scratching the back, the result is that the icon's hand hangs above where the user's hand is

actually positioned. This problem can only be corrected by tracking the clavicle motion

and applying it to the model. 0

A second problem with the model was observed regarding the imposition of joint

limits. The joint limits shown in Table 3 were arrived at by observing apparent limitations

in movement of the human joints in the direction of the modeled joints. In fact, only a few

restricted movements were observed in isolation from other movements. The range of

movements available to the user, a result of combining motion around all three axis of

81

rowion, require these model limits be expanded. This was discovered when the icon's

posture smapped from various positions to others during testing. Removing most of the

joint limits (as has been done in Appendix A) resulted in elimination of the problem. Since

the physical joint limits of the user himself will prevent unrealistic articulation of the figure,

it would seem there is no need for joint limits in the model.

0 The method chosen to handle singularities in the system, avoidance, does not result

in noticeable inaccuracies. One might expect that skipping over singularities might result

in a discontinuity in motion. Attempts to place the system in a singularity or move the

0 system through a singularity show no difference from other types of motion.

Inaccuracies in the method chosen to calibrate the system can cause problems.

During testing of the elbow joint, it was noticed that the elbow lagged the actual elbow joint

4 angle by approximately 10 degrees. It was discovered that this was a result of assuming 0

degrees joint angle at the time of calibration, when in fact this is not possible for most users

without hyperextension of the elbow. This resulted in a computed elbow joint angle which

was always less than the actual joint angle by an amount equal to the difference between

actual and reference positions at the time of calibration. To correct this, the reference

position was changed to a position where the elbow is bent 90 degrees with the arm forward

6 and thumb pointed up. This placed the lower arm and hand parallel to the world coordinate

system x-axis and required that the two reference calibration matrices associated with the

lower arm and hand be modified in the code. The problem was no longer observed. It

6 should be noted, however, that accuracy is still effected by how closely the user can

position himself to the reference position.

Accuracy of motion replication involves timing also. It is not enough that static

0 positions be replicated accurately. The goal is for the motion to be replicated with the same

rates and accelerations. If the system exhibits minimal lag and can position the virtual

human in real-time, then the rates and accelerations displayed will be close to that of the

82
* 0:q

* 0 0 0 ,.

actual user. An attempt at quantifying system lag was not made for lack of suitable

measuring equipment Subjectively, there is a perceptible lag in the virtual hum.z's

movements, but it is not large for even the fastest of arm movements. Polhemus provides

the latency of its tracker as four ms from the center of the receiver measurement period to

the beginning of transfer from output port [POLH93]. It is likely that most of the perceived

lag, however, is a result of overhead due to transfer of data from the output port to the SGI

and device driver buffers, and subsequent rendering. When compared with the interface

developed by McMillan [MCMI96b], lag is much improved. This is probably due to the

fact that McMillan's interface used a more complex model (Jack) and worked in a

networked virtual environment (NPSNET). Excessive lag in this case, resulted in a loss of

fluidity in the rendered motion. This highlights the need for identifying system choke

* points in order to ensure maximum efficiency when working in the networked

environment.

2. Position ImplementationO

From the outset, it became apparent that it would be difficult to use the Polhemus

electromagnetic trackers for position tracking. It was possible to observe control of the

virtual hut in's clavicle in all four directions, but only if the user's position remained very 0

close to the calibration position. The representation exhibits constant jitter due to sensor

drift. Movement away from the calibration position results in a lack of controllability due

to poor tracking system registration. Polhemus reports a static position accuracy of 0.08 0S

cm RMS for x, y or z receiver position when within 76 cm of the transmitter's antennas

[POLH93J. In a simple test, two sensors were attached 30 cm apart to a plastic ruler. The

magnitude of the position vector between them was conmputd and output to the screen. The 0

sensors where moved throughout a one meter cubed workspace corresponding to the

area in which the clavicle was tested. Readings changed rapidly and varied between

83

, 0..,,.

20 cm and 54 cm. Livingston and State's data for raw position error, taken

coucrent with their measments for orientation error, show an average error of

5.69 cm with a standard deviation of 4.55 cm and minimum and maximum errors of

".11 and 32.17 cm respectively [L1V196]. Two sensor positions are required to track

the clavicle. This being the case, it is clear that these errors are too large to allow

accurate position tracking of a nominal 14 cm long clavicle.

B. EASE OF USE

The interface is easy to set-up and use. The user must have four measurements

taken, including spine to shoulder length, upper and lower arm lengths, and the hand length.

After donning the equipment and turning on the Fastrak system, the program can be run.

The user inputs his measurements and then stands in the calibration position. Pressing the

"enter" key causes a three second delay, after which calibration measurements are taken

and tracking commences. Following this, it only takes a few seconds to display the

replicated image. The entire process takes approximately five minutes.

Control of the figure is as easy as controlling one's own body. The intuitive nature

of the interface is born out by the fact that small children can successfully use it when told

to position the figure in a variety of postures. Sensor mounting does not restrict movement,
I0

if care is taken to make sure the upper arm sensor is not mounted too close to the elbow.

Sensor wiring is perhaps the most encumbering aspect of the interface. Routing sensor

wiring up the arm, through the arm and torso sensor straps, and down the back helps to

avoid entanglement, though the user must be mindful of wiring that trails back to the

Fatrak control box. Sensor wiring and transmitter range restrict use to approximately 10

-12 feet from the transmitter's antenna. Within this workspace, however, the user is

relatively free to move about.

84

*i

* 0 0

Io

VIL SUMMARY AND CONCLUSIONS r

* A. SUMMARY

This thesis addressed the problem that virtual environments (VE's) do not possess

a practical, intuitive, and comfortable inmterface that allows a user to control a virtual

human's movements in real-time. The approach was to develop an interface for the upper 4

body, since it is through this part of users' anatomy that they interact most with their

environment. Implementation included construction of a 24 DOF Danevit-Hartenberg

kinematic model of the upper body. The model is manipulated in real-time using 0

orientation data from electromagnetic motion tracking sensors placed on the user.

Electromagnei trackers were chosen because of their 6 DOF tracking capability,

availability, and low cost. Their small size makes them easy to attach to the user.

Calibration of these sensors is a straight-forward process. The user simply positions

himself in a reference position for a single set of sensor readings. The device takes

approximately one sixth the time to don and calibrate as do mechanical interfaces with

similar capability. •

Research resulted in an interface that is easy to use and allows its user to interact

with a VE. The device tracks thirteen degrees of freedom. Upper body position is tracked,

allowing the users to move through the VE. When using the device, the user has the feeling

of being immersed in the VE. The interface can be used for a variety of applications which

do not require higher levels of precision.

B. CONCLUSIONS S

The electromagnetic tracking systems available today lack sufficient accuracy and

registration to enable their use as arue six DOF trackers. I was hoped that by using a

traditional kinematic noation together with six degree of freedom sensors, a smaller 0

number of sensors and less encumbering system would result. While this may be true, in

many applications it would be desirable to mount a six DOF tracker on each limb, rather

85

:0

0~ 0

than reduce the number of rackes. This enables one to use the redundant tracking data to

eaccuacy for precision applications, such as sighting and firing a rifle in the virtual

environment Accurate and wel registerred six DOF electromagnetic trackers could be used

in many application in which the current trackers cannot be used. This would be of great

benefit to the designers and users of virtual environments.

One method of improving the registration of electromagnetic trackers is to calibrate

the device within a specified workspace and provide a look-up table for error correction

during operation. This is exactly the work being undertaken by Livingston and State at the

University of North Carolina [LIVI96]. Their experimentation with a Faro Metrecomr

IND- 1 mechanical tracker and Flock of Birds sensor has resulted in a method which

reduced the average position error by 78% and the average orientation error by 40%. They

found, however, that orientation errors depend not only on the tracker's position, but also

on its orientation. Their lack of success in reducing orientation error is attributed to their

original assumption to the contrary. A 6D look-up table is therefore required for

orientation. This makes a look-up table calibration method impractical for orientation.

However, if the look-up table method is applied to position data, it should reduce errors

enough to significantly improve registration. This could make electromagnetic trackers

usable as a true six DOF trackers for some applications, including this one.

The usability of electromagnetic trackers for military applications is greatly

reduced by several aspects of their design. First, their sourced nature requires the user to

remain within range of the transmitter. In some combat training scenarios this would be a

severe restriction. Second, their susceptibility to ferromagnetic interference can greatly

impede their use in the military environment. Care must be taken to avoid operation near

ferromagnetic objects, such as rifles, certain types of combat gear, electronic equipment,

and the metal bulkheads of ships, tanks and other vehicles or simulators. Finally, the

system used here was tethered. This means that large or cluttered working volumes can be

86

dficult to work in. Military applications require large working volumes, greater freedom

of motion, and freedom fromn fenromagnetic interference. This makes sourceless and

untethred systems that are robust in an environment high in electromagnetic interfernce

very desirable.

The design of this interface, as with any other engineered product, reflects trade-

offs between achievable capabilities. For example, by making the system easy to calibrate

some precision is sacrificed. Also, by reducing the complexity of the model for increased

speed and efficiency, some accuracy in replicating the user's movements or simulating his

reaction to the environment is lost. For example, a dynamic model and force feedback

could be used to create a more acceptable waining environment, but at a cost of much

greater complexity and system overhead. The question is whether an acceptable balance

can be achieved between trade-offs when considering the overall purpose of the system.

One must recognize, however, that limitations of available technology may preclude

successful achievement of all design goals.

The success of this interface is application dependent Consider that success is

related to the ability of the user to use the interface to accomplish tasks and learn in the

virtual environment The angles-only implementation of the system is usable for tasks

which can be accomplished with only gross motor control. These include various forms of

locomotion and dance, use of arm signals, communicative interaction with virtual devices,

moving virtual objects, and playin? games that require lower amounts of coordination, such

as virtual handball with a large or slower moving ball. It is unlikely that this interface could

be used for applications requiring higher levels of precision, such as aiming and firing a

rifle. It remains to be seen whether the interface can be used in the networked virtual

environment and for what purposes. 0

A 0
87

* 0 0

C. FUTR WORK

The angles-only interface can be improved in several basic ways. Additional

sensors could be added for articulation of the left arm, and the system could be modified to

allow articulation of the head. The ability to provide the user a view from the eyes of the

virtual human is also desirable. Finally, the rendered appearance of the model can be

improved by incorporating one of several graphic models currently available in academia

and fth commrcial sector.

Additional testing of the interface is necessary to determine its strengths, t
weaknesses, and suitability for the networked virtual environment Though a major

undertaking, a quantitative evaluation of the accuracy with which the figure can be

positioned is desirable. It is also important to determine the lag in the interface. Results of

these tests could be used to identify possible improvements. More subjective testing of the

ability of users to accomplish various tasks should also be conducted. Following these

quantitative and qualitative tests, the interface could be implemented in a networked virtual

environment and the tests repeat.

The issue of using electromagnetic tracker position data should be revisited. A

look-up table calibration method such as the one described in [I.VI96] and a suitable filter

4 for reducing the jitter associated with sensor drift could be implemented. The interface

could then be modified for increased accuracy or for use with fewer sensors. Such a change

could result in significantly improved applicaton of the interface.

Finally, research in other areas of modeling and tracking may result in more

effective interfaces. For example, by modeling the body using a quaternion notation one

can eliminate singularities [COOK92J. Rate tracking through positions that otherwise

would have been singularities can occur. Suitable quaternion filters can be designed to

combine tracking inputs and enhance the output of the interface [BACH96b].

98•

* .0

SS* 0 0

0

Altmrate new tracking technologies should also be investigated. Spread spectrum

electromagnetic tracking and artificial vestibular (inertial) systems are particularly

promising. The spread spectrum system would enhance accuracy, resolution, response,

robustness, and sociability over current electromagnetic systems. An artificial vestibular

system is the only sourceless system, allowing for excellent robustness and sociability.
o

Perhaps a combination of tracking technologies will result in the best system, with

advantages of one technology compensating for disadvantages of another.

This thesis provides a starting point for those interested in developing better

interfaces for users of Virtual Environments. It can be found on the Internet at http://www-

npsnet.cs.nps.navy.mia/npsnet/publications.html. Code used in this thesis can be accessed

via anonymous file transfer protocol (FTl) at ftp://ftp-npsnet.cs.nps.navy.niil/pub/

skopowski/ArticulatedHuman.tar.Z.

99

* 0

* 0

89

* 0

I.... .. *" O 9. ... 0 0... 0 9.... 0 • _..

UI 'I

I,
0

V
* I.

I.
I

S.

*

* 0

* 0

* ¼
90 1

* p.

0 0

APPENDIX A: ANGLE TRACKING SOFTWARE

// FILENAME: link.h
// PURPOSE: declarations for the link class
//
/I AUTHOR: P F Skopowski
// DATE: 26 Nov 95
// COMMENTS: definition and some functions of the link class

#ifndef LINK_H
#define LINK_H

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glx.h>

class Link 0

public:
Link(double, double, double, double, double, double,

float = 0.0, float = 0.0, float = 0.0, float = 0.0);

//---
// Function: rotate (double angle)
// Purpose: set the link's joint angle
//---

void rotate (double angle)

if (angle < minjoint_angle)f
angle = minjointangle; 0

if (angle > maxjointangle){
angle = maxjointangle;

jointangle = angle;

/--
// Function: rotateincrement (double incrementangle)
// Purpose: increment the link's joint angle
//---

void rotateincrement (double incrementangle) •

double angle = incrementangle + jointangle;
rotate (angle);

91

* '0

// Function: draw()
// Purpose: draw the link in the proper position/orientation
I--

void draw()

glTranslated ((GLdouble) inboardlinklength, 0.0, 0.0);
glRotated ((GLdouble) inboardtwistangle, 1.0, 0.0, 0.0);
glTranslated (0.0, 0.0, (GLdouble) jointdisplacement);
glRotated ((GLdouble) jointangle, 0.0, 0.0, 1.0);
if (draw_length > 0.0)(

drawDiamond(0.0, 0.0, 0.0, draw-length, drawwidth,
drawdepth, drawoffset);

//---
// Function: reset()
// Purpose: reset the link's joint angle to its zero posit
/.---

void reset()

jointangle = initial-jointangle;

/--
// Function: set-joint_displacement(float displacement)
// Purpose: set the link's joint displacement
// Returns: TRUE
//---

int set-jointdisplacement (float displacement)

jointdisplacement = displacement;
return 1;

/I--
// Function: set_inboardlink_length(float length)

4/ Purpose: set the link's inboard link length
// Returns: TRUE
//---

int setinboard-linklength(float length)

inboard_linklength = length;
return 1; I

*)

92

al

// Function: setdraw._length(float length)
II Purpose: set the draw_.length of the link
// Returns: TRUE
//---

int setdraw_length~float length)

draw-length = length;
return 1; 0

I,---
/ Function: set_drawwidth(float width)
/ Purpose: set the draw_width of the link
/ Returns: TRUE
/---0

int set_draw_width(float width)

draw_width = width;
return 1;

}0

/.---
/ Function: getdrawoffset()
/ Purpose: get the drawoffset of the link
/ Returns: draw_offset
/.---

float get.drawoffset()

return drawoffset;

90

93

protected:
double inboardlinklength;
double inboardtwistangle;
double joint-displacement;.
double initial-jointangle;
double jointangle;
double minjointangle;
double max_jointangle;
int number_outboard_links;
float draw._length;
float drawwidth;
float drawdepth;
float draw_offset;

// utility functions
void drawDiamond(float x, float y, float z,

float length, float width, float depth, float offset);

void computeNormal(const float* a, const float* b, const float* c,
float *result);

#endif

'i.

Li

94o

o1

0 0, °

// FILENAME: link.cc

// PURPOSE: function definitions for the link class

II AUTHOR: P F Skopowski 6
1/ DATE: 26 Nov 95
// COMMENTS: Link constructor and drawDiamond function
I/ MODIFIED: 9 Mar 96

#include "link.h"
#include <math.h>

/--
// Function: Link(double ill, double ita, double jd,
I/ : double ija, double minja, double max_ja,
// : float dl, float dw, float dd, float doff)
/1 Purpose: constructor of the link type
// Returns: link class object
//---
Link::Link(double ill, double ita, double jd, double ija,

double min-ja, double max.ja,
float dl, float dw, float dd, float doff)

inboardlinklength = ill;
inboardtwistangle = ita;
jointdisplacement = jd;
initialjointangle = ija;
joint.angle = ija;
min_jointangle = minja;
max-jointangle = max_ja;
drawlength = dl;
drawvwidth = dw;
drawdepth = dd;
drawoffset = doff;

9

95

1*

N,,.

F
hmk.~C

I/ Function: drawDiamond(float x, float y, float z, 4
* // : float length,float width, float depth,

//: float offset)
// Purpose: draw a diamond with end at (x,y,z)
// use specified parameters
// : draws diamond along the x-axis
// : center of diamond can be offset
//---
void Link::drawDiamond(float x, float y, float z,

float length,
float width,
float depth,
float offset)

* II float x,y,z; end of the diamond in 3-space.

float midpoint; I/ x coordinate for waist vertices of the diamond
float halfwidth; // half the width
float halfdepth; // half the depth

float p[6] [3]; // array to hold coords for the diamond vertices.
float n[3]; // array to hold the normal vector

// Compute the x-axis midpoint.

* midpoint=length*offset;

// Compute half the dimensions.
halfwidth = width/2.0;
halfdepth = depth/2.0;

I/ vertices.
p[0] [0]=x;
p[0] [1]=y;
p[0] [2]=z;

p[11] [0]=x+midpoint;
• pi 11] iy;

p1l] [2]=z+halfdepth;

p[2] 0]=x~midpoint;
p [2] [I]=y~halfwidth;
p[2] [2]•z;

* p[3] [0]=xemidpoint;
p[3] 11]-y;
p[3] [21=z-halfdepth;

96

* . .. 0*

p14) (0)=x+midpoint; .
p14) 1l).y-haltwidth;0

p[4)121-z;

pISI(lnx~lngt4
p15) (1)=y;
p[15) 2)=z;

* ~//glColor3f(l.O, 1.0, 1.0); /1Set the color to white.0

1/Compute arnd set normal for the first side
computeNormal(p[O]. p~ll, p(12, ni);
glNormal3fv(n);

* ~~gl~egin (GL_.POLYGON);0
glVertex3fv(p 10]);
glVertex3fv(pljj);
glVertex3fv(p[2]);

g1Endo;

//glColor3f(0.0, 0.0, 0.0); IISet the color to black.

// Compute and set normal for the first side
computeliormal(p[0), p[1], p(1], ni);
glNormal3fv(n);

* ~~glBegin(GL...POLYGON);0
glVertex3fv(p 10]);
glVertex3fv(p 12]);
glVertex3fv(p[313);

glEndo;

//glColor3f(1.0, 1.0, 1.0); IISet the color to white.

/1Compute and set normal for the first side
cornputeNormal(p[0], p[3), p[14, n);
glNormal3fv(n);

* ~gle~gin(GL...POLYGON);
glVertex3fvlp 101);
glVertex3fv(p 13]);
glVertex3fv(p 14));

glEndo;

//glColor3f (0.5, 0.5, 0.5); I Set the color to gray.

IICompute and set normal for the first side
computeNormel(p101, p(4], p11], ni);
glNormal3fv(n);

97

gI~egin (GL..)OLYGOI);

glV~rtox3fv(p[41);

glVertex3fv(p[lfl;
glEndo;

//glColor3f (0.5, 0.5, 0.5); IISet the-color to gray.

* // Compute and set normal for the first side 0
computeNormal(p(5], p[2), pill, n);
glNormal3fv(n);

gl~egin (GL...POLYGON);
glVertex3fv(p(5]);

* glVertex3fv(p[12);
glVertex3fv(p~l]);

glEndo;

//glColor3f (1.0, 1.0, 1.0); /1Set the color to white.

// Compute and set normal for the first side
computeNormal(p[5], p[3), p[2), n);
glNormal3fv(n);

gi~egin (GL_.POLYGON);
glVertex3fv(p 15]);

* glvertex3fv(p[3]l;
glVertex3fv(p(2]);

g1Endoi;

//glColor3f (0.0, 0.0, 0.0); IISet the color to black.

/1Compute and set normal for the first side
computeNormal(p515, p[4], p313, n);
glNormal3fv(n);

glBegin (GLPOLYGON);

glVertex3fv(p 15]); I
glVertex3fv(p[14);
glVertex3fv(p[313);

glEndo;

//glColor3f(l.0, 1.0, 1.0); IISet the color to white.

IICompute and set normal for the first side
computeNormal(p[S], pill, p41], n);
glNormal3fv(n);

* 90

glBegin (GL._POLYGON);
glVertex3fv(p[5]);
glVertex3fv(p[l]);
glVertex3fv(p[4]);

glEndo; : .

II the diamond is drawn.

I--
/I Function: computeNormal(const float* a, const float* b,
II: const float* c, float *result)
// Purpose: compute normal vector to a triangular polygon
//---
void Link::computeNormal(const float* a, const float* b, const float* c, 0

float *result)

{
float x[3];
float y3]J;
float magnitude;

// compute the first vector

x(O] = b[O] -a(0;

x[l] = b[l] - all];
x12] = b(2] - a(2];

// compute the second vector

y[O] - c[O] - a[01;
y~l] = c[l] - all];
y[21 = c[2] - a[2];

I/ compute the cross product vector

result[O] = x[l] * y[2] - x[21 * y[l];
result[i] = x(2] * y[O] - x(O1 * y[21;
result[21 = x[O] * y[l] - x[l] * y[O];

* l/normalize the result 0

magnitude - sqrt(result[0] * result[0] + resultll] * resultil] +
result(2] * result[2]);

result[0] - result[l0/magnitude;
result[l] a result[ll/magnitude;

• result[2l = result[2]/magnitude;

* 0-

• 99

// FILVW(3: linkl.h
// PURPOSE: declarations for the linkl class

AUTHOR: P F Skopowski
D/ DATE: 26 Nov 95
C/O4T: definition of the linki class

*ifndef LINKIH
#define LINKI_H

#include *link.h*

class Linki : public Link

public:
Link1() : Link (0.0, 0.0, 0.0, 0.0,

-90.0, 90.0, 0.0, 0.0, 0.0, 0.0)

private:

};

*endif

100

* 00

* O0O
S.. . ." N lll . . . n " i i u

* i L

* // FILENAME: link2.h -0
II PURPOSE: declarations for the link2 class .

II AMIOR-: P F Skopowski

/I DATE: 26 Nov 95
II COIMMEITS: definition of the link2 class

*ifndef LINK2_.y I'
#define LINK2_H

#include "link.h"

class Link2 : public Link

public:
Link2() : Link C 0.0, 90.0, 0.0, -90.0, -270.0,

30.0, 0.0, 0.0, 0.0, 0.0)

private:

e*ndif

101

I F�ULBNAME: link3.h

*O 1I PURPOSE: declarations for the link3 class
//
I/ AUTHOR: P F Skopowski
// DATE: 26 Nov 95
II COMENTS: definition of the link3 class

*ifndef LINK3_H
#define LINK3_H

#include Ilink.h*

6
class Link3 : public Link

public :
Link3() : Link (0.0, 90.0, 0.0, 0.0,-75.0, 75.0, 17.5, 10.5, 6.5, 0.5) A

private:

1;

* #endif

*

102.

7 0

* 0 0L0

_ 1

Oak" -

// FILENAME: link4.h
// PURPOSE: declarations for the link4 class

// AUTHOR: P F Skopowski
[/ DATE: 26 Nov 95
// COMMENTS: definition of the link4 class

#ifndef LINK4_H
#define LINK4_H

#include Ilink.h"

class Link4 : public Link

public:
Link4() : Link 17.5, 90.0, 0.0, 90.0,

0.0, 180.0, 0.0, 0.0, 0.0, 0.0)

private:

1;

#endif S

103

S •

l *.

b//FILENAME : llnk5.h

// PURPOSE: declarations for the linkS class
/P
II AUTHOR: P F Skopowski
// DATE: 26 Nov 95
// COMMENTS: definition of the link5 class

#ifndef LINK5_H
#define LINK5_H

#include link.h,

class Link5 : public Link

public:
Link5() : Link (0.0, 90.0, 0.0, 90.0,

0.0, 180.0, 0.0, 0.0, 0.0, 0.0)

private:

*endif

R"
*o

IF

104

MAI
II FILENAME: link6.h
// PURPOSE: declarations for the link6 class
/i
// AUTHOR: P F Skopowski
// DATE: 26 Nov 95
// COMENTS: definition of the link6 class

#ifndef LINK6._H
#define LINK6_H

#include •link.h"

class Link6 : public Link

public:
Link6() : Link (0.0, 90.0, 0.0, 180.0,

135.0, 225.0, 28.0, 13.0, 6.5, 0.8)
(1)

// Function: draw()
// Purpose: draw the link in the proper position/orientation
I--

void draw()

// draw the torso
glTranslated ((GLdouble) inboardlink_.ength, 0.0, 0.0);
glRotated ((GLdouble) inboard-twistangle, 1.0, 0.0, 0.0);
glTranslated (0.0, 0.0, (GLdouble) joint._displacement);
glRotated s(GLdouble) (jointangle - 90.0), 0.0, 0.0, 1.0);
drawDiamond(0.0, 0.0, 0.0, drawý_ength, drawwidth,

draw_depth, drawoffset);

// draw the head
glRotated ((GLdouble) 45.0, 1.0, 0.0, 0.0);
drawDiamond(drawlength, 0.0, 0.0, 10.0, 10.0, 10.0, .8);
glRotated ((GLdouble) -45.0, 1.0, 0.0, 0.0);

// draw the nose
glPushMatrix();
glTranslated((drawlength + 5.0), 0.0, 0.0);
glRotated (90.0, 0.0, 1.0, 0.0);
drawDiamond(0.0, 0.0, 0.0, 6.5, 3.0, 3.0, .2);
glPopMatrix(;
glRotated ((GLdouble) 90.0, 0.0, 0.0, 1.0);

private:
I;

tendif

105

.rA

F
/FILENAME: link7.h

//// PURPOSE: declarations for the link7 classIl

11 AUTHOR: P F Skopowski
// DATE: 26 Nov 95
// COENTS: definition of the link7 class

#ifndef LINK7_H
#define LINK7_H

#include "link.h'

class Link7 : public Link

public :
Link7() : Link 7.5, 90.0, 22.5, 0.0,

-30.0, 40.0, 0.0, 0.0, 0.0, 0.0)

private:

* 4 #endif 0

*k .ix•
1 0

4 U.+

S 0+.. .. i + +. . . 0+.. .. .0... . 0 0... ..+ _...

Ikkk~b
IFILENA*M*E**:lin~k8.h

//PURPOSE: declarations for the link8 class

IIAUTHOR: P F Skopowski
DAE:2 Nov 9

IICOMMENTS: definition of the link8 class

#ifndef LINKS_H
#define LINKS_H

#include "link.h'

class LinkS : public Link

public:
Link8() :Link C0.0, 90.0, 0.0, 0.0,

-20.0, 50.0, 12.5, 6.5, 6.5, 0.5)
f1 0

private:

*endif

107

/ILENAME: link9h

PURPOSE: declarations for the link9 class

SAUTHOR: P F Skopowski
/I DATE: 26 Nov 95
It COMMENTS: definition of the link9 class
// ********************w****************~************W****** j.

#ifndef LINK9..H
#define LINK9_H

#include Ilink.h"

class Link9 : public Link

public:
Link9() : Link (12.5, 90.0, 0.0, 90.0, 4

-360.0, 360.0, 0.0, 0.0, 0.0, 0.0)

private:

#endif

10

S.. •• .,•., • o .,. 1...

/FILEM : link10.h

PURPOSE: declarations for the link10 class

// AUTHOR: P F Skopowski
// DATE: 26 Nov 95
// COMMENTS: definition of the linkl0 class

#ifndef LINK10-H ..
#define LINK10_H

#include Ilink.h,

class LinklO : public Link

public:
LinklO(: Link (0.0, 90.0, 0.0, 90.0,

-360.0, 360.0, 0.0, 0.0, 0.0, 0.0)

private:

};

#endif •

0

1019

S- • i: ' • ' i • : I :

1 4
// FILNAME: linkll.h

* // PURPOSE: declarations for the linkli class

// AUTHOR: P F Skopowski
DATE: 26 Nov 95

// COMMENTS: definition of the linkil class

#ifndef LINKII_H
#define LINKIl_H

#include Ilink.h,

class LinklI : public Link

public:
Link11() : Link (0.0, 90.0, 0.0, 0.0,

-360.0, 360.0, 22.5, 10.0, 10.0, 0.2)
6() 0

private:

* #endif

"* I"

110

* lip

// FILENAME: link12.h
/1 PURPOSE: declarations for the link12 class
I,
// AUTHOR: P F Skopcwski 4
// DATE: 26 Nov 95
// COO4ENTS: definition of the link12 class

#ifndef LINK12_H
#define LINK12_H

#include Ilink.h'

class Link12 : public Link

public:
Link12() : Link (22.5, 90.0, 0.0, 15.0,

0.0, 170.0, 25.5, 9.0, 9.0, 0.2)
• {) 0

private:

* #endif O

g* 0

* O

* 0

111

* •

* 0,

* O9

//II wt twt lt ~ t ****.**************************mtw *t *Q*•***

I/ FILENAME: link13.h•
// PURPOSE: declarations for the link13 class
//
// AUTHOR: P F Skopowski
// DATE: 26 Nov 95
// COMMENTS: definition of the linkl3 class

#ifndef LINK13_H
*define LINK13_H

#include "link.h,

class Link13 : public Link

public:
Link13() : Link (25.0, 0.0, 0.0, 0.0,

-90.0, 90.0, 0.0, 0.0, 0.0, 0.0)

private:

#endif

112

* 1~'o

* 9;

// FILENAME: linkl4.h
I/ PURPOSE: declarations for the link14 class

IIAUTHOR: P F Skopowski '
1/ DATE: 26 Nov 95
II COMMENTS: definition of the link14 class

*ifndef LINK14-HJ
*define LINK14_H

#include Ilink.h,

class Linkl4 : public Link

public:
Link14() : Link C 0.0, -90.0, 0.0, -90.0,

-180.0, 0.0, 0.0, 0.0, 0.0, 0.0)

private:

1;

*endif

* 1

113

* •

0•IJ'...__:4. 0,-O 0 "0,,

9

I,

II FILENANE: linklS.h
// PURPOSE: declarations for the link6 class

I AUTHOR: P F Skopowski
// DATE: 26 Nov 95
I COMMENTS: definition of the link15 classII w***wt**ite***ewt **e***************tw**** t*t*****tt******,

#ifndef LINK15_H
*define LINKl5_H

#include link.h"

*L
class Linki5 : public Link

public:
Link15() : Link (0.0, -90.0, 0.0, 0.0,

-90.0, 90.0, 17.0, 3.0, 8.0, 0.2)

void draw()

/draw the hand
glTranslated ((GLdouble) inboardlinklength, 0.0, 0.0);
glRotated ((GLdouble) inboard_twistangle, 1.0, 0.0, 0.0);
glTranslated (0.0, 0.0, (GLdouble) joint_displacement);
glRotated ((GLdouble) jointangle, 0.0, 0.0, 1.0);
glRotated (-90.0, 0.0, 1.0, 0.0);
glRotated (90.0, 1.0, 0.0, 0.0);
drawDiamond(0.0, 0.0, 0.0, draw._length, draw.width,

draw-depth, draw-offset);

// draw the thumb
glRotated ((GLdouble) -30.0, 0.0, 1.0, 0.0);
drawDiamond(0.0, 0.0, 0.0, (.75 * draw_.length), 3.0, 3.0, .5);
glRotated ((GLdouble) 30.0, 0.0, 1.0, 0.0);
giRotated ((GLdouble) 90.0, 0.0, 0.0, 1);

private:

#*ndif

114

// FILENAME: link16.h
// PURPOSE: declarations for the link16 class//

// AUTHOR: P F Skopow-ki
// DATE: 26 Nov 95
// COMME4TS: definition of the link16 class

.

*ifndef LINK16-H
#define LINK16_H

#include Ilink.h'

class LinkI6 : public Link(0

public:
Link16() : Link (-7.5, 90.0, 22.5, 180.0,

140.0, 210.0, 0.0, 0.0, 0.0, 0.0)

private:

*endif •

115

"-.

//FILENAMEE: link2l.h
* II PURPOSE: declarations for the link2l class

IIAUTHOR: P F Skopowski
1/DATE: 26 Nov 95
//COS(DTS: definition of the link2l class

*ifndef LINK2l_H
#d~efine LINK2ljH

#include Ilink.h,

class Link2l :public Link

public:
Link2l() :Link (22.5, 90.0, 0.0, 0.0,

-360.0, 360.0, 25.5, 9.0, 9.0, 0.2)

private:

01

* 116

o

// FILENAME: link23.h

// PURPOSE: declarations for the link23 class

// AUTHOR: P F Skopowski
// DATE: 26 Nov 95
// COMMENTS: definition of the link23 class

#ifndef LINK23_H
#define LINK23_H

#include Ilink.h"

class Link23 : public Link

public:
Link23() : Link (0.0, 90.0, 0.0, 90.0,

-180.0, 0.0, 0.0, 0.0, 0.0, 0.0)S{} 0

private:

#endif

* 1

* 0

117

* 0

I/ FILENAME: link24.h
* // PURPOSE: declarations for the link24 class

// AUTHOR: P F Skopowski
// DATE: 26 Nov 95
// COMENTS: definition of the link24 class

#ifndef LINK24_H
#define LINK24_H

#include Ilink.h,

*0
class Link24 • public Link

public:
Link24() : Link (0.0, -90.0, 0.0, 0.0,

-90.0, 90.0, 17.0, 3.0, 8.0, 0.2)

void draw()

// draw the hand
glTranslated ((GLdouble) inboardlinklength, 0.0, 0.0);
glRotated ((GLdouble) inboardtwist-angle, 1.0, 0.0, 0.0);
glTranslated (0.0, 0.0, (GLdouble) jointdisplacement);
glRotated ((GLdouble) joint angle, 0.0, 0.0, 1.0);
glRotated --90.0, 0.0, 1.0, 0.0);
glRotated (-90.0, 1.0, 0.0, 0.0);
drawDiamond(0.0, 0.0, 0.0, drawjength, draw._width,

drawdepth, drawoffset);

// draw the thumb
glRotated ((GLdouble) -30.0, 0.0, 1.0, 0.0);
drawDiamond(0.0, 0.0, 0.0, (.75 * drawlength), 3.0, 3.0, .5);
glRotated ((GLdouble) 30.0, 0.0, 1.0, 0.0);
glRotated ((GLdouble) 90.0, 0.0, 0.0, 1);

private:

*endif

0i

* ,. ..
• • •118

IIFILENAME: upperbody.h
* IIPURPOSE: declarations for the upper-body class

//AUTHOR: P F Skopowski
//DATE: 26 Nov 95
//COMM4ENTS: definition of the upperbody class

*ifndef UPPERBODYH
4define UPPERSODY_H

#include IlinkI .h.
include Ilink2.h-
#include Ilink3 .h-
#include Ilink4 .h-
#include IlincS .h-
#include Ilink6 .h-
#include Ilink7 .h,
#include IlinkS.h 0
#include 'link9.h.
#include 'linklO.h-
#include Ilinkll.h,
#include Ilinkl2.h-
#include Ilinkl3.h
#include Ilinkl4.h'
#include Ilinkl5.h 0
#include Ilinkl6.h-
#iniclude Ilink2l.h,
#include Ilink24.h'

class Upperbody

private:
LinkI linki;
Link2 link2;

* Link3 link3;0
Link4 link4;
Link5 linkS;
Link6 link6;
Link7 link7;
LinkS link8;
Link9 link9;

* Link1O linklO;
Linkil linkil;
Link12 link12;
Link13 link13;
Linkl4 link14;

119

0 0t

uppwheiyth 2

pLin k15 linkiS;
Link16 linkl6; f.

* Link8 linkl7;
Link9 linklB;
Linklo lirikl9;
Linkl link2O;
Link2l link2l;
Linkl3 1inic22;

*Link14 link23;
Lirik24 link24;

public:
Upperbody 0;

void rotate (double*)

void rotate~increment (double*)

void drawo;

void reset));

mnt set...lin)sjength(int, float);

mnt set~joint....dsplacement(int, float);

#endif

120

I

// FILENAME: upperbody.cc
II PURPOSE: functions for the upperbody class

I/ AUTHOR: P F Skopowski
I/ DATE: 26 Nov 95
S// COMMENTS: functions for the upperbody class

#include lupperbody.h // include the header file for the class

// Function: Upperbody()
/1 Purpose: constructor of the Upperbody type
II Returns: Upperbody class object
// --
Upperbody::Upperbody() I/ constuctor
(1

/ ------------------------------- ---
// Function: rotate (double angle[25])
Ii Purpose: set joint angles to the angles specified
//---
void Upperbody::rotate (double angle[25])

linkl.rotate(angle[l]); // set each link's joint to the new angle
link2.rotate(angle[2]);
link3 .rotate(angle[3]);
link4 rotate(angle[41);
link5.rotate(angle[5]);
link6.rotate(angle[6]);
link7 .rotate(angle[7]);
link8.rotate(angle[8]);
link9.rotate(angle[9]);
linklO.rotate(angle[l0] ;
linkll.rotate(angle[ll];
linkl2.rotate(angle[12]);
linkl3.rotate(angle[13] ;
linkl4.rotate(angle[14]);
linkl5.rotate(angle[15]);
linkl6.rotate(angle[6j);
linkl7.rotate(angle[17] ;
linkl8.rotate(angle[181);
linkl9.rotate(angle[19] ;
link20.rotate(angle[201);
link2l.rotate(angle[211);
link22.rotate(angle[22] ;
link23.rotate(angle[23]);
link24.rotate(angle[24]);

12

IIFunction: rotate~increment (double increment..angle[251)

/1Purpose: increment joint angles by the angles specified
I--

void Upperbody: :rotate~increment (double increment~angle[25])

linkl.rotate~..increment(increment...angle[1]); //increment each joint angle
1 ink2 .rotate-.increment (increment..angle (21); 4

link3 .rotate..increment (increment-angle[3]);
link4 .rotatejincrement(increment...angle[4]);
linkS .rotate...increment (increment...angle[5]);
1 ink6 .rotate.Jncremenc (increment...angle [61);
1 ink7 .rotate..jncrement (increment...angle [71);
linkS. rotate...ncremnent (increment..angle [81);
1 ink9 .rotate..jncremnent (increment...angle [91);
linklO.rotate~increment (increment..angle[lO]);
linkll rotate..jncrement (increment...angle[111);
linkl2 .rotate_increment (increment~angle [12]);
linkl3 .rotateý_increment (increment~angle [131);
linkl4 .rotateýincrement (increnient...angle[14 1);
linklS .rotateý_increment (incremnent...angle[15]);
linkl6. rotateý_increment (incremnent..angie[16]);
linkl7 .rotate_increment (increment~..angle[l7]);
linklB. rotate-increment (increment..angle [18));
linkl9. rotate_increment (incremnent-angle (19]);
link20.rotate-increment(increment-angle[201);
link2l .rotate..increment (increment...angle [21]);
link22 .rotate_incremnent (increment...angle [221);
link23 .rotate_increment (increment~angle [231);
link24 .rotateý_increment (increment...angleL24H);

'---~
IIFunction: draw()
IIPurpose: draw the upperbody ; j
1--

void Upperbody: :draw()

linkl.draw(); //draw each link, starting at the waist
link2.drawoj;
link3 .drawo;
link4.drawo;
link5.drawU;
link6.drawo';
glPushMatrix(); //after drawing upper torso, remember where it was drawn
link7.drawol; 1/start drawing left side from the shoulder
link8.drawt);
1 ink9. draw ();
linklO.draw()

linkll.draw() 1
122

linkl2.clravo; .
linkl:3.draw();
linkl4.drawo;
lirxk15.drawo;
glPopl~atrixfl; Icome back to the upper torso6
lirikl6.drawO; IIstart drawing the right side from the shoulder
link17.drawo;
linklB.draw();
linkl9.drawfl;

6 link2O.drawo);
link2l.draw()
link22.drawo;
link23.draw()
link24.drawo;

/--
/1Function: reset()
IIPurpose: reset all joint angles to their zero position
/--

void Upperbody: :reset (

linkl.reseto; /1reset the joint angle in each link
link2.reseto;
link3.reset();
link4.reseto;
linkS reset 0;
link6.reset0;
iink7.reseto;
linkS.reseto;
link9.resetU;
linklO.resetV¶;
linkll reset C)
linkl2 reset 0;

* linkl3.resetU;
linkl4. reset C
linkl5.resetfl;
link16.reoeto0;
linkl7.reset 0;
linklS.reseto;
linkl9.reset0;
link2O.reset0;
link2l reset 0;
link22 reset C
link23.reseto;
link24.reset()

123

WEIRI

-p"bdc 4
----

/I Function: set_link_lengthtint link, float length)
* // Purpose: set the link length of a specified link

// Returns: TRUE if successful

int Upperbody::set-link_length(int link, float length)

int success = 0;

switch (link) (

case 1:
success = link1.set~draw_length(length);
if (success)(

success = link2.setinboardlink_length (length);

break;
case 2:

success = link2.set~draw_1ength(length);
if (success)

success = link3.set_inboardlink_length(length);

break;
case 3:

success = link3.set_draw_length(length);
if (success)({

success = link4.set_inboardlinklength(length);

* break; 0 E
case 4:

success = link4.set~drawlength(length);
if (success)

success = link5.set_inboard_linklength(length);

break;
case 5:

success = link5.set draw-length(length);
if (success)

success = link6.setinboardlinklength(length);

break;
* case 6: 0

success = link6.setdrawwidth(2*length);
if (success)

success = link7.set-inboard_link_length(length);
success = linkl6.setinboard_linklength(-length);

}4
break;

124

case?7:
success =link?. set~draw..,length (length);
if (success)

success - iink8.set-inboardjlink-length(length);

break;
case 8:

success - linkS.set...draw._..ength(length);
if (success)(

success = iink9.set...inboard...link...length(length);

break;
case 9:

success = link9.set_drawý_1ength(length);
if (success)

* ~success = linklO set.Jnboardjlink~length (length);

break;
case 10:

success = linklO.set_drawý_length(length);
if (success)(

* success = linkll.set-inboard-linkiength(length);

break;
case 11:

success = linkll.set_draw_length(length);
if (success)(

success =linkl2.set...inboard...link...length(length);

break;
case 12:

success = linkl2.set-draw_iength(length);
if (success)

success = linkl3 .set-inboard..link...length (length);

break;
case 13:

success = linkl3.set-drawiý.length(length);
if 'success)(

success = linkl4.set-inboard..link....ength(length);

* ~break;
case 14:

success = iinkl4.set...draw...length (length);
if (success)

success = linkIS .set-inboardjlink-length(length);

break;
S case 15:

success =llnkl5.set...draw...ingth(length);
break;

125

* -6

case 16:

success = linkl6.set...draw~length(length);
if (success)(

success = lirikl7 set...inboardjlink- ength (length);

break;
case 17:

success = linkl7.set..draw.._length(length);
* ~if (success) H

success = linklB.set.Jnboard~link...length(length);

break;
case 18:

success = linkl8.set...drawk._ength(length);
if (success)(C

* ~success = linkl9.set~inboardjink...length (length);

break;
case 19:

success = linkl9.setdraw length(length);
if (success)

* success = link2O set-inboard..link-length(length);

break;
case 20:

success = link2O.set-...rawýlength(length);
if (success)(

* ~~success = link2l.set...inboard..link...lengthclength);

break;
case 21:

success = link2l set..draw...length (length);
if (success) (

success = link22.set~inboard~link~length(length);

break;
case 22:

success = link22 .set...drawý._..ength(length);
if (success)(

success = link23.set...inboard,..link...length(length);

break;0
case 23:

success = link23.set...draw~length(length);
if (success)

success - link24.set~inboardjlink-length (length);

break;
4 case 24:

success =link24.set...draw~length(1.ngth);
break;

126 I

- ~74
default:

break;

return Success;., •

II Function: setjointdisplacement(int link, float displacement)
I/ Purpose: set the joint displacement of a specified link
II Returns: TRUE if successful
/--

int Upperbody::setjointdisplacement(int link, float displacement)

int success a 0;

switch (link)

case 1:
success = linkl.set.joint_displacement (displacement);
break;

cast 2 :
success = link2.setjointdisplacement (displacement),

break;
case 3:

success = link3.setJointdisplacement (displacement);
break;

case 4:
cesuccess = link4.set-joint_displacement(displacement);

break;
case 5:

success = link5.set.jointdisplacement(displacement);
break;

case 6:
success = link6.set-jointdisplacement(displacement);

break;
case 7:

success a link7.setjointdisplacement(displacement);
if (success)(

success = linkl6.setjointdisplacement (displacement);
success = link6.setdraw_length(displacement/

link6.getdrawoffset ());

break;
case 8:

success a linkS.setjointdisplacement(displacement);
break; •

case 9:
success = link9.setjoint_displacement (displacaeent);
break;

127

'

case 10:£4

success = linklO .setjoint...displacunent (displacement); I
4 break;

case 11:
success = linkill.sett..joint..Aisplacement (displacement);
break;

cane 12:
success a linkl2.set..joint~..displacaaent(displacement);
break;

case 13:
success = linkl3 .set...joint...displaceinent (displacement);
break;

case 14:
success a linkl4 .set..joint...displacement (displacement);
break;

* case 15:
success = linkl5.set-.joint..displacement(displacement);
break;

case 16:
success a linkl6 .set...joint-displacement (displacement);
if (success)(

success = link7 .set~joint..displacement (displacement);0
success w link6.set_draw_length(displacement/0.8);

break;
case 17:

success a linkl7 .set-j oint...displacement (displacement);
break;

* case 18:
success = linklS.set.joint..displacement(displacement);
break;

case 19:
success = linkl9 .set...joint...displacement (displacement);
break;

case 20;
success = link20.set-.joint-..displacement(displacement);
break;

case 21:
success = link2l .set~joint...displacement (displacement);
break;

case 22:/
* ~~success a link22 .set..joint...displacement (displacement);0

break;
case 23:

success a 11nk23 .set..joint...displacanent (displacement);
break;

case 24:
success a 11nk24 .set~joint...displacement (displacement);

* break;
default:

break;

return success;

128

* 1
A- W

* - 1 4I
/ / .,,,,.,..,.,,*,.*,,,,,,,,,,.,.,..,.,,,..,,*,*.,,,,*,,,,, 4
II FILENANE: lowerbody.h

* /1 PURPOSE: declaration. f or the Lowerbody class

II AUTHOR: P F Skopowski 4
// �TE: Nov 95
II C�Si�ITS: definition of the Lowerbody class
// **.****.********�*�, **,.,*,..,,,,,,,,*******************

*
*i fndef LOWBRBODY.JI
*define L�IERBODY.JI

*include <GL/gl .h>
*include <GL/glu
*include <GLIglx.h>

6 *includ. .�nath.h>

class Lowerbody

private:
void drawDianond(float, float, float, float, float,

float, float);
void cowputeNornal(const float' a, const float* b, const float' C,

flQat 'result);

* public: 4
Lowerbody() (1;

//---
// Function: draw()
// Purpose: draw the lowerbody
// the lowerbody is static and does not move

6 /1---
void draw()

glgotated(-90.0, 0.0, 0.0, 1.0);
drawOiamond(0.0, 0.0, 0.0, 12.0, 13.0, 6.5, 0.8);
glRotated(30.0, 0.0, 0.0, 1.0);
drawDiamond(l0.5, 0.0, 0.0, 25.5� 9.5, 9.5, 0.2);

* drawDiamnond(36.0, 0.0, 0.0, 27.5, 8.5, 8.5, 0.2); 0
glaotated(-60.0, 0.0, 0.0, 1.0);

S4

// FILENAME: lowerbody.cc
// PURPOSE: function definition for the lowerbody class

// AUTHOR: P F Skopowski 4
IIDATE: 26 Nov 95

/ COMENTS: drawDiamond function

#include Ilowerbody.h,

// Function: drawDiamond(float x, float y, float z,
// : float length,float width, float depth,

* // : float offset)
// Purpose: draw a diamond with end at (x,y,z)
// : use specified parameters
// : draws diamond along the x-axis
// :center of diamond can be offset
//---
void Lowerbody::drawDiamond(float x, float y, float z,

float length,
float width,
float depth,
float offset)

// float X,y,z; end of the diamond in 3-space.

float midpoint; // x coordinate for waist vertices of the diamond
float halfwidth; // half the width
float halfdepth; // half the depth

* float p[6] (3]; // array to hold coords for the diamond vertices.*
float n[3]; // array to hold the normal vector

// Compute the x-axis midpoint.
midpoint=length*offset;* 0
I/ Compute half the dimensions.
halfwidth - width/2.0;
halfdepth a depth/2.0;

I/ vertices.
* p[O) [Ojax;

p(OJ (lJ=y;
p[O] (2]-z;

130

*. ..

*~ 0

bwerody=c 2

p~l] [0J=x+midpoint;
p1i] [l]3y;
p~i] [21=z+halfdepth;

P[212'0]zx+midpoint;
pC2J (l)=y~halfwidth;
pC2I (2]=z;

p131 tO1zx+midpoint;
p131 11]=y;
p13112Vzz-halfdepth;

p414](0]=x+rnidpoint;
p[4] [l]=y-halfwidth;
p[14] 2]=z;0

p15] t0]=x+length;
pC5Hl]=-y;
p15] (2]=z;

//glColor3f (1.0, 1.0, 1.0); IISet the color to white.

//Compute and set normal'for the first side
computeNormal(pI0l, p(11], p[1], n);
glNormal3fv(n);

gl.Begin (GL..POLYGON);
glVertex3fv(p (0]);
glVertex3fv(p 11]);
glVertex3fv(p[2D);

glEndo;

//glColor3f (0.0, 0.0, 0.0); IISet the color to black.

// Compute and set normal for the first side
computeNormal(p[0], p212, p[3], n);
glNormal3fv(n);

glsegin (GL..POLYGON);
0 glVertex3fv(p[10);

glVertex3fv(p[2 1);
glVertex3fv(p[313);

glEnd();

//qlColor3f(i.0, 1.0, 1.0); IISet the color to white.

* // Compute and set normal for the first side
computeNormai(p010, p[13, p[4), in);

* giNormal3fv(n);

131

I NO iy~ee 34

gl~egin (GL...POLYGON);
glV~rtex3fv(p~o]l;

glVertex3fv(p(4fl;
glindo;

//glColor3f(0.5, 0.5,.0.5); IISet the color to gray.

* II Compute and set normal for the first side
cOmputeNormal(p[o], p[4], P[11, n);
glNormal3fv(n);

glBegin (G...POLYGON);
glVertex3fv(p[0J);

* glVertex3fv(p(4]);
glvertex3fv(p[li);

glEndo;

//glColorif(0.5, 0.5, 0.5); IISet the color to gray.

* II Compute and set normal for the first side
coznputeNormal(pf51, p(21, P11], n);
glNormal3fv(n);

glBegin (GL....POLYGON);
glVertex3fv(p[5]l;* * glVertex3fv(p[2]n;
glVertex3fv(p(l]);

glEndoj;

//glColor3f(I.0, 1.0, 1.0); IISet the color to white.

IICompute and set normal for the first side
computeNorrnal(pl-], p[3], p[1], n);
glNormal3fv(n);

gl~egini(GL_.POLYGON);
glVertex3fv(p[5]);

* glVertex3fv(p[31);
glVertex3fv(p[2fl;

glEndo;

//glColor3tco.0, 0.0, 0.0); IISet the color to black.

ICompute and set normal for the first side
computeNormal(p[S], p414, p[3], ni);
glNormal3fv(n);

132

* 9

o4

glBegin(GL_POLYGON);
glVertex3fv(p(5]);
glVertex3fv(p(4]);
glVertex3fv (p (3]);

glEnd(;

//glColor3f(1.0, 1.0, 1.0); // Set the color to white.

// Compute and set normal for the first side
computeNormal(p[5], p(1], p[4], n);
glNormal3fv(n);

giBegin (GLPOLYGON);
glVertex3fv(p[5]);
glVertex3fv(p[1]);
glVertex3fv(p[4]);

glEnd();

// the diamond is drawn.

1--
// Function: computeNormal(const float* a, const float* b,
//II : const float* c, float *result) •
// Purpose: compute normal vector to a triangular polygon

.--
void Lowerbody::computeNormal(const float* a, const float* b, const float* c,

float *result)

f x 3
float x[3];
float y[3] ;

float magnitude;

// compute the first vector

* x[0] = b[0] - a(01;
x(l] = b[l] - a(1;]
x[2] = b[2] - a[2];

// compute the second vector

y0o] = c[I] - a[0]; 0
y~l) - c[l(- a(13;
y(21 - c(2] - a(2];

* •
133

*

~ ~--~-

bowurbey.ec S

/1compute the cross product vector

*result[O] = x[l] * y(21 - x[2] *y[1

result~l] = x[21 * y[O] - x[0O] y[2];
result[2] = x[OI * yil] - xli] * []

//normalize the result

magnitude = sqrt(result(Ol * result[O) + result~ll] resulitl]

result[2] *result[2]);

result[O] = result[O]/magnitude;
result[2] = result[II/magnitude;

134

body.b14

IIFILENAME: body.h
//PURPOSE: declarations for the Body class
// : uses angles-only tracking technique

IIAUTHOR: P F Skopowski
IIDATE: 1 Mar 96
//COMM4ENTS: definition of the Body class

#ifndef BODY_H
#define BODY_H

#define PFý_CPLUSPLUS_,API 0
#include <Performer/pf h>
#include "upperbody .h,
include Ilowerbody .h
#include 'FastrakClass.h'

class Body

private:
Upperbody upperbody;
Lowerbody lowerbody;

mnt valid;

FastrakClass *fastrak_uýnit;

FS'rK_stations torso-sensor;
FSTK_stations upperarm-sensor;
FSTK_stations lowerarm-sensor;
FSTK_stations hand_sensor;

IIFastrak related coordinate systems
pfmatrix H_tx_tQ~ts, H-tx..touas, H_tx-to_las, K~tx~tojis;

IICalibration matrices
pfMatrix H_ts_to~linkO, H_ýuas_to_link2O;
pfMatrix HL_las_to_link2l, Hjis~to~link24;
pfMatrix H-ts-to..screen;
pfMatrix H_ts_to..positO;
float x..offset, y..offset, z~offset;
float x~posit, y-posit, z...posit;
float x..ref, y~ref, z~ref;

// Graphical model related coordinate systems
pfMatrix H_screen, HO, H20, H21, H24;

135

II Body part lengths i
float spine...shoulder...length, uarm~lerigth, larm-length, hand-length;

void outputH~atrix(pfMatrix H~mat);4

public:

Body~corist char *cfg~filenam);

-Body();

void rotate (double)

void rotate_increment (double*)

void drawo;

void reset U; ;S

mnt exists() (return valid;

void get~all..inputs U; '

mnt calibrateoi;

mnt set~joint...angles; 4;

* m~~it calculate~joint...angles(double)4

mnt set-link_length(int, float);t

mnt set.joint...displacement(int, float);

*endi f

136

// FILENAME: body.cc
// PURPOSE: functions for the Body class
// : angles-only tracking technique
I/ AUTHOR: P F Skopowski
// DATE: 1 Mar 96
I/ COMMENTS: functions for the Body class

#include <math.h>
#include <iostream.h>
#include "body.h"

/--
II Function: Body(const char *configfilename)
// Purpose: constructor of the body type
// : creates and initializes FastrakClass object
// : uses fastrak.dat configuration file
II Returns: body class object
/--

Body: :Body(const char *config_filename) 0

valid = FALSE;

fastrakunit = NULL;

// open configuration file 9
ifstream configfileobj (config.filename);
if (!config-fileobj) (

cerr << "Error: opening configuration file:
<< configfilename << endl;

return;

* !9

I/ initialize matrices & variables
pfMakeldentMat (Htx-to-ts);
pfMakeIdentMat (Htxtouas);
pfMakeIdentMat (H_txtolas);
pfMakeldentMat (HKtx.tohs);
pfMakeIdentMat(H_tstoscreen);
pfMakeIdentMat (Htsto_linkO);
pfMakeldentMat (Htsto..posit0);
pfMakeldentMat (Huasto_link20);
pfMakeldentMat(H_Ias_to_link2l);
pfMakeIdentMat (H.hsto_l ink24);
pfMakeIdentMat (H_screen); 0
pfMakeIdentMat (HO);
pfMak.IdentMat (H20);
pfMakeIdentMat (H21);
pfMakeIdentMat (H24);
x-offset = 0.0;

137

* 00
S . .. :!• •: . . . i.• . ..:':• •,.:. " :::::.-0 , . 0:= :

ba$ 2

y.offset = 0.0;
zoffs..t o 0.0;

Ilinitialize Fastrak ['
fastrak.unit = new FastrakClass(configfileobj);

if (fastrak_unit->exists())
* if (fastrakunit->getState(FSTKSTATION)))

torso-sensor = FSTK_STATIONI;
if (fastrak_unit->getState(FSTKSTATION2))

upperarmsensor = FSTKSTATION2;
if (fastrakunit->getState(FSTKSTATION3))

lowerarmsensor = FSTKSTATION3;
if (fastrak_unit->getState(FSTKSTATION4))

handsensor = FSTKSTATION4;

valid = TRUE;

*}

//---

1/ Function: -BodyC)

// Purpose: destructor of the body type
I--

Body: :-Body()

if ((fastrak_unit != NULL) && (fastrak_unit->existso))
delete fastrak..unit;
fastrak-unit = NULL;

) !I.S)

Function: rotate (double *angles)
Purpose: set upperbody joint angles

uses the passed in array of values
.--

• void Body::rotate (double *angles)

upperbody .rotate (angles);

0 138

.

S N 0

boy 34
----------------- --------------
//Function: rotatejincrement (double *increment angles)

* II Purpose: increment upperbody joint angles
II : uses the passed in array of values4

I--
void Body::rotate_increment (double *increment angles)

upperbody rotate...ncrement (increment~angles);

/--
/1Function: draw()
IIPurpose: draw the body in the proper position
/--

* ~void Body::draw()

IIdetermine where to start drawing the upperbody
pfMultMat(H...screen, H-tx-to..ts, H-ts-to-screen);
pfMatrix temp;

x...offset = temp[O] [3] - H...tx..to..ts[O] [3];
y....ffset = teznp[l] [3] - H...tx..to-ts~l [3];
z_offset = temp[21 [3] - HLtx~.to..ts[2] [31;
x-.posit = H-tx..to~ts[O] [3] - x~ref + x~offset;
y..posit = H~tx~tots[l] [3] - y...ref + y...offset;
z..posit = H_tx..to..ts[2] [3] - z..ref + z...offset;

* I// set the openGL matrix (ie. array)0
GLfloat H..body[16];
H...body[O] = H...screen[O] [0];
H-.body[l] = H...screen[1] [0];
H-body[2] = H...screen[2J [0];
H-body.[3] = H-screen[3] [0];
H-body[4] = H-screen[O] [1];
H~body[5] = H-screen~l] [1];
H...body[61 = H..screen[2] [1];
H....ody[7] = H~screen[3] [1];
H..body[8] = H...screen[0J [2];
H..kody[9] = H-screen[1] [21;
H-.body[l0] - H-screen[2] (2];

*H-.body[1]1 = H-screen[3] [2];
H..body C 2]j = x..posit;
HLbody[13] = y~pogit;
H-b.ody (141 a z.posit;
H...body[15] - H..screen[3] [3];

gIMatrix34ode(GL.JIODELVIEW);

glPughMatrixfl;

IIalign the tx and screen coord systems

139

r7

glRotated(90.0, 1.0, 0.0, 0.0);
gIRotated(-90.0, 0.0, 0.0, 1.0);

glxultmatrixf (H-body); 4
upperbody.drawo;

glPop)4atrix ();

I/ lowerbody.drawci;

/--
// Function: reset()
// Purpose: reset upperbody joint angles
I--

void Body::reset()

upperbody.resetci;

I--
// Function: set-link_length(int link, float length)
/I Purpose: set a specified link's length
// : used to size the link to the user
// Returns: TRUE if successful

.--
int Body: :setlinklength(int link, float length)

if (upperbody. set-linklength(link, length))(

return TRUE;

}Hreturn FALSE;

"--
// Function: setjoint_displacement(int link, float length)
// Purpose: set a specified link's joint displacement
// : used to size the link to the user

// Returns: TRUE if successful

int Body: :set-joint-displacament(int link, float length)

if(upperbody.setjointdisplacement (link, length))(
return TRUE; 0

return FALSE;
I

140

* li

* 9

- S

I --------------------------------- -----------------------
// Function: getall_inputs()
/I Purpose: get inputs from the fastrak trackers
II : called to copy latest sample from second buffer [
II : implemented for double buffering to reduce 4
/1 :lock overhead
II :called once at the beginning of each frame
II Comment: original interface design by Scott McMillan
1--

void Body::getall_inputs(,

if (fastrakunit->exists())
fastrakunit->copyBuffer (;

* fastrak..unit->getHMatrix(torsosensor, Htxtots);
fastrak_unit->getHMatrix(upperarm_sensor, H_tx..touas);
fastrakunit->getHKatrix(lowerarmsensor, Htxtolas);
fastrakunit->getHl4atrix(handsensor, H.tx,_tojhs);

}0

I--
II Function: output
// Purpose: output homogeneous transformation matrix (4x4)
//---

* void Body::outputHMatrix(pfMatrix Hmat) 0
{

for (int i=0; i<4; i++)
printf(° %6.3f %6.3f %6.3f %6.3f\nO,

Hmat[i][0], Hmat(i][1], Hmat[i] [2], Hmat(i][3]);
printf("\n*);

I--
II Function: setjointangles()
II Purpose: Set the body's joint angles using fastrak data
II Returns: TRUE if successful

* II~~~---
int Body: :setjointangles()

int valid a FALSE;

double angles [25];

for (int i = 0; i < 25; i++){
anglestil = 0.0;

valid - calculatejointangles (angles);

* 0

141

* S

, V 0:•• •, •: •

if (valid)
* rotate(angles);

return valid;

FI unction: calculate...joint...angles(double '
IIPurpose: calculate inverse kinematics

II : return the joint angles
1/ get..all..inputs must run first to update data

IIReturns: TRUER if successful
I--

int Dody: :calculate..joint...angles (double *angles)

int valid a FALSE;

double thetal8 = 0.0;
double theta19 - 0.0;0
double theta2O - 0.0;
double theta2l - 0.0;
double theta22 = 0.0;
double theta23 = 0.0;
double theta24 = 0.0;

const double deg...to...rad =.017453292519943295;

if (fastrak...unit->exists())
//must call get...all~inputs() first

valid a TRUE;

IIconvert reported data using calibration matrices

pfl~ultl~at(H20, H~tx..to...uas, H...uas...to..link2O);

pf~ult~at(H24, H..tx-tojls, H-hs...to..link24);

* II~/ compute T_.17_.to_.200
pf~atrix T_17_.to...20, IL.temp;
pfMatriX T_17_to_0 (0.0, 1.0, 0.0, 7.5),

0.0, 0.0, -1.0, 40.0),
(-1.0, 0.0, 0.0, 0.0 11
10.01 0.0, 0.0, 1.0)

pf~atrix HO~inv;
pflnvertPullfat(H0O.inv, HO);

pfftlt~at(R~tmV, HO..inv, H120);

Vf~ut~a(T_1_to20, _17toO H~mW0

Iget the data from T_17_to_20 .
double a2 a T17_to_20(l](0];

* double b2 = T...17.to-201] (11;
double C3 a T_17_to_20(21121; 1
double C2 - T_17_to_20(11([21;

double cl a T_17to_.20(0] (2];

IIcompute the sin of thetal9
*double sin..thetaig - sqrt(a2 a 2 +b2 *b2);

//check for zero
if Csin...thetaI9 < 0.001)(

sir~theta19 =0.001;

* IIset the sign of the answer
if (c3 < 0.0)(

sin...thetal9 *= -1.0;

IIcompute the angles
theta19 = atan2(sin...thetal9, c2);
theta20 = atan2(b2lsin...thetal9, -a2/sin~thetal9);
thetal8 = atan2 (c3lsin~thetal9, cl/sin~thetal9);

// compute T_20_to_21

pfMatrix T_.20...to...21, H20...inv;

pflnvekrtFulll~at (H20..inv, H20);

pfMultxat(r...20..to...21, 1120...inv, H21);

//get the data from T_20_to..21
float &3 aT_20to_2l(2](01;
float b3 a _0t_12[]

IIcompute the angle
theta21 - atan2Ca3, b3);

pfMatrix T..21_to...24, H21_.inv; -

pflnvekrtFul~lMat(H21_jnv, H21);

pf)(ult~at(T_.21...to_24, H21_jnv, H124);

// get the data from 1124
a3 a T._.2l..to_.24(2I (0];

* b3 Wa T...21..to_.24(2] (11;
c3 a T-21-to-2412(2];
C2 a T21_.to..24(l] (21;
cl - T...21-.to-24(0](2];

143

1/compute the sin of theta23
double sin..theta23 a -sqrt(a3 *a3 W 3 b3);

/1check for zero
if (sin.~theta23 > -0.001] (4

sin...theta23 =-0.001;

IIcompute the angles
theta23 = atan2(sin-theta23, -c3);
theta24 a atan2 (b3Isin..~theta23, -a3/sJin..theta23);
theta22 - atan2(-c2/sin~theta23, -cl/sin~theta23);

IIconvert all angles to degrees

thetaIB /a deg..to...rad;

thetal9 /a deg~to~.rad;

theta20 /a deg~to~rad;I
theta2l /a deg...to..rad;
theta22 Iadeg..to..rad;

* ~~thota23 1=deg...to..rad;
theta24 /a deg~to~rad;

angles~l] = 0.0;
angles(2] = -90.0;
angles[3] = 0.0;
angles[4] = 90.0;

*angles(5] = 90.0;
angles[61 = 180.0;

angles[7] = 0.0; L
anglesIlO] = 90.0;
angles[111 a 90.0; 0
angles[10] = 90.0;
angles[11] a 0.0;
angles[12] a -0.0;
angles[15] z 0.0;

angles[15] - 10.0;

angles(171 = 0.0;
*anglestla] . thetalS;

angles[19] = thetal9;
angles[20] = theta20;V
angleks[211 a theta2l;
angles[221 a theta22;
angles[23] a theta23;

angles[241 theta24;

return valid,;I

'44

ALL-.-

IIFunction: calibrate()
IIPurpose: size the upperbody model to the user

II : calibrate the trackers
IIReturns: TRUE if successful
I,---

irit Body: :calibrate()

int valid a FALSE;

pfMatrix H...torso...reported, H..uarm..reported;
pf~atrix HLlarm~reported, H~hand~reported;

pfNakeldent~at (H...torso...reported);
pf34akeldentMat (ILuarm~.reported);
pfxakeldentidat (HLlarm~reported);
pfMakeldentMat (Hjiand~reported);

if (fastrak~unit->existsci)
valid = TRUE;
char str;

IIrequest upperbody dimensions
cerr << end << *Input spine to shoulder length (cm):;
cm >> spine...shoulder..length;
cerr << "Input upper arm length: 1;
cm >> uarmjength;
cerr << 'Input lower arm length: ~
cm >> larm..length;
cerr << *Input hand length:;
ci >> handL-length;
cin.get(str);

IIset upperbody dimensions to that of the user
set-link..length(3, 21.0);
set....ink-length (6, 0.36 * spine~shoulder...length);
set l.oint...displacement(16, 26.0);
set....ink...length (17, 0.64 *spine...shoulder...length);

set...link..length (8, 0.64 *spine...houlder~length);0

set..link...length(20, uarm....ength);
set...link...length(ll, uarm....ength);
set_link_length(21, larm...length);
set...link...length(12, larm..length);
set...lnkjlength (24. hand~length);
set...lnk..length(15, hand..length);

145

a0

WOWr~ 18

cerr << end << *Calibrating sensor orientation in 3 seconds..." << endl;
cerr << 'Press <Enter> to start count-down:

* cin.get(str);
for (int 1-0; i<3; i++)

sleepti);

cerr << (char) 7;

* II this code allows the fastrak to do the calibration for torso
//float angles[3] (90.0, -90.0, 180.0);
//fastrak...unit->uetsoresight (torso-.sensor, angles);

1/get the data to compute the calibration matrices
fastra)Lunit-).copyBuffer();
fastrak...unit->getHl~atrix(torso....ensor, H~j.torso..reported);

* ~~fastrak...unit->getHl~atrix(upperarn~sensor, H...uarrn...reported);
fastrak...uni t->getHO~atrix (lowerarni..sensor, H...larm-..reported);
fastrak...unit->getHMl~trix (hand...sensor, H..hand~reported);

/1compute the calibration matrices0

IIcompute torso sensor calibration matrix
pfl~atrix H-torso...reported..inv;

pfxatrix J~ts..desired*= {f1.0, 0.0, 0.0, 0.0),
0.0, 1.0, 0.0, 0.0),

S{0.0, 0.0, 1.0, 0.0),
0.0, 0.0, 0.0, 1.0));

pflnvertFullldat (H..torso...reported...inv, H-.torso...reported);

0 pfMatrix H..ts..desired2 = (1.0, 0.0, 0.0, 0.0),
0.0, 1.0, 0.0. 0.0),
0.0, 0.0, 1.0, 0.0),

0.0, 0.0, 0.0, 1.0));

pfMultMat(H.ts...to..screen, I~torso...reporte&..inv, H..ts..,desired2);
pfSeti~atCol(H...ts..to..screen, 3, 0.0, 0.0, 0.0, 1.0);

IIcompute torso sensor calibration matrix for positO tracking
//some necessary matrices

pft~atrix P~tx...to..ts, R..tu..to~tx;

* ~~~pfCopyNat (R..tx..to~ts, H...torso..reported);

/1set posit col to zero to work with rotation matrix onlyI

pfSet~atCo1(R...tx...to~.ts, 3, 0.0, 0.0, 0.0, 1.0);

146

*A ALALI
¾MO

//get the inverse rotation matrix
pfTransposeMat (R...ts..to..tx, R..tx~to...ts);

dtriesialofsenso from~ ts and link: O.fse) .)

floaat..dsie x-ffe =(0.0..0;1.,0.

pf~arix ~ofset~s~t-l 0.0,J 1.0, 0.0, 0.0), xofe
1.0 0.0, 0.0, 0.0), -ffe)

0.0 0.0, 0.0, 1.0)); 0)1

pflner~t~ulla(H...uarmrporited.3,....inv, 1 H...am..eporte);3,tm[][.)
(~efaHuatorsq jinkted0, urreotd[nH3.ur..deie)

compte pperarmsensor calibration matrix
pfati HLlarm...reported~inv;

pfatix l~arm~desired 0 .0, 0.0, 01.0, 0.0),
0.0, 0.0, -1.0, 0.0).
0.0, 1.0, 0.0, 0.0),
0.0, 0.0, 0.0, 1.0));

pfInvertFull~at(HLlarnL~reported...inv, H~larm...reported);

pf~ulti~at (H..uas..to..link20, H~uarm...reported~inv, H..larm...desired);

//compute hand ar sensor calibration matrix

pfMatrix)lhan&.reported-inv,

* 0.100 10 -)

1.0 0.100 0-0)0

* I.
0I

boimec 12K "
// place hand straight out with elbow bent
pflatrix Hhand-desired (0.0, 0.0, 1.0, 0.0),

(-1.0, 0.0, 0.0, 0.0),
{ 0.0, -1.0, 0.0, 0.0),
(0.0, 0.0 0.0, 1.0));

/was previously this, for straight down
//pfMatrix H_hand-desired = { 0.0, 1.0, 0.0, 0.0),
// (-1.0, 0.0, 0.0, 0.0), i.
// (0.0, 0.0, 1.0, 0.0),
// (0.0, 0.0, 0.0, 1.0));

pfInvertFullMat (H-handreportedinv, Hhandreported);

pfMultMat(H.hs_to_link24, H_hand.reportedinv, H_hand.desired); 0

return valid;

*148

..

*Z

APPENDIX B: FASTRAK DEVICE DRIVER 4
4

FsaskChbu. 1 0
// ****ttt**********t********t********twt***w****ttwtttt*t*t****t*t***t*

// File FastrakClass.h
// Author Scott McMillan
// :Naval Postgraduate School
// :Code CSMs
// Monterey, CA 93943
// :mcmillangcs.nps.navy.mil
// Project NPSNET - Individual Combatants/Insertion of Humans into VEs
// Created August 1995
// Summary This file contains the declarations for a C++ class to
// :manage the Polhemus 3Space Fastrak.

// :For detailed information on the operation of the Fastrak,
// :refer to the 3SPACE USER'S MANUAL.
//
// :This program was based on the ISOTRACK program written by
// : Paul T. Barham in Sept. 1993 for single sensor case. Major
// :modifications have been made to adapt to multiple sensor
// : case. The resulting code, written by Jiang Zhu in 0
// :Jan. 1995, underwent another major modification to support
// :binary data in continuous mode.

Copyright (c) 1995, •
* Naval Postgraduate School

Computer Graphics and Video Laboratory
• NPSNET Research Group
• npsnet@cs.nps.navy.mil

• Permission to use, copy, and modify this software and its •
documentation for any non-comnercial purpose is hereby granLed

* without fee, provided that (i) the above copyright notices and the
following permission notices appear in ALL copies of the software

• and related documentation, and (ii) The Naval Postgraduate School
Computer Graphics and Video Laboratory and the NPSNET Research Group

* be given written credit in your software's written documentation and
be given graphical credit on any start-up/credit screen your
software generates.

* This restriction helps justify our research efforts to the
* sponsors who fund our research.

• Do not redistribute this code without the express written"• consent of the NPSNET Research Group. (E-mail communication and our 0
"* confirmation qualifies as written permission.) As stated above, this
"* restriction helps justify our research efforts to the sponsors who
"• fund our research.

* This software was designed and implemented at U.S. Government

149

Fwa~a 2

" expense and by employees of the U.S. Government. It is illegal '

"* to charge any U.S. Government agency for its partial or full use.

"* THE SOFTWARE IS PROVIDED 'AS IS, AND WITHOUT WARRANTY OF ANY KIND,

"* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY 4"* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

* E-Mail addresses:
* npsnet~cs.nps.navy.mil
* General code questions, concerns, comments, requests for
* distributions and documentation, and bug reports.
* npsnet-infoecs.nps.navy.mil
* Contact principle investigators.
* Overall research project information and funding.
* Requests for demonstations.

Thank you to our sponsors: ARL, STRICOM, TRAC, ARPA and DMSO.
*/

#ifndef __NPS_FASTRAK_CLASS_
#define __NPS_FASTRAK_CLASS_

#include <ulocks.h>
#include <fstream.h>

// Boolean values
#ifndef TRUE
#define TRUE I#endif

#ifndef FALSE
#define FALSE 0
#endif

const int PORTNAMESIZE 48;

// Assumptions and limitations which influence the use of the FASTRAK
/1 program:
//

1/ 1). I assume that the user of the FASTRAK program will use it in a
II single process, say the application process in PERFORMER, that
// is, a instance of the "FastrakClass, class will only be used in a 0
/1 process in which it is created. Hopefully, this is not too
// restricted.
//
I/ The problem with the current version when it is used in multiple
II processes is that the readdata(, read_.posorient() and
// readhomomatrix() methods are not guarded with the
If data-record-parameter-updating binary semophere. Instead, a lock
// is used for guarding data buffer switching. Refer to the
// implementation for details.
//

// It is easy to fix this problem. Basically, what you need to do is

150

0 00•

--

/1 to guard the two methods with the above binary semophere. The .
// cost is that now the
/I read_data(/read._posorient(/read_homomatrix() method and the
// getpacket() method are almost totally mutually exclusive, which// may slow the system performance down. If this is done, the lock ,// for guarding data buffer switching can be eliminated.

II 2). The FASTRAK program was witten so that it can be used to process
/I any number of sensors. The only thing you need to do is to change 0
// the constant FSTK4DUMSTATIONS to the number of sensors you
I/ have. However, there is a limit caused by the system on the
I/ number of sensors you can use. Basically, the problem is that the
// data buffer size, BUFFERSIZE, is constrained by the size of the
I/ largest one-dimensional array allowed by the system.

// Conventions used in this file and FastrakClass.cc:
//
// All the constants and data types intended to be used by the user
// of the FSTK start with the prefix FSTK. Those that do not have
// this prefix should be used only in this file and FastrakClass.cc.

// All constants are in capital letters.

// Terms used in this file and FastrakClass.cc:
//
// station: Each trasmitter and receiver pair is called a station in
I/ the 3SPACE USER'S MANUAL.

// The algorithm:
I'
// In single process mode, a single process, which is the one which
// creates the the "FastrakClass' object, requests a required type of data
// packet from the FSTK when it needs one.//•
// In multiprocess mode, the process which creates the 'FastrakClass°
// object spawns a light weight child process which continuously
// polls the FSTK to get a required type of data packet, which is the
// data producer and runs in parallel with the parent process, the
// data consumer.
//

//I The data packet is decomposed in the parent (or single) process, 0
/I the consumer, to generate the required type of data when a data is
// requested by the user of the FSTK.

// the masks used to specify the types of data requested from the FSTK
*define FSTKCOORDMASK Ox001 /1 Cartesian coordinate (X,Y,Z)
#define FSTKEULERJMASK 0x002 // Euler angles (Azim,Elev,Roll)
#define FSTKXCOSMASK 0x004 // X-axis directional cosines
#define FSTK_YCOSMASK 0x008 // Y-axis directional cosines
#define FSTK_ZCOSMASK Ox010 ZI z-axis directional cosines
#define FSTKQUATMASK 0x020 I/ Quaternion (W, X, Y, Z)
#define FSTK_16BIT_COORDMASK 0x040 // 16BIT format coordinate data

151

#define FSTKr.16BITEULERMASK OxO08 // 16BIT format euler angles
#define FSTK._16BITQUATUASK 0x100 // 16BIT format quaternion

* #define FSTKCRLFMASK 0x200 // the framing CR/LF characters
#define FSTKDEFAULTMASK Ox0cO // 16BIT COORD and EULER_4ASKs 4
/I The sizes of the types of data returned from the FSTK -- in bytes
// IEEE single precision floating point format has 4 bytes per number
// 16BIT obviously has two bytes per number.

* #define FSTKHEADERSIZE 3 // data record header from the FSTK
#define FSTKCOORDSIZE 12 // Position coordinates
#define FSTK..EULER..SIZE 12 // Euler angles
#define FSTKMXCOSSIZE 12 // X-axis directional cosines
#define FSTK_YCOSSIZE 12 // Y-axis directional cosines
#define FSTK..ZCOSSIZE- 12 // Z-axis directional cosines i
#define FSTKQUATSIZE 16 // Quaternion

• #define FSTK_16BIT_COORD_SIZE 6 // 16BIT format coordinates 0
#define FSTK_16BIT_EULERSIZE 6 // 16BIT format euler angles
#define FSTK_16BITQUATSIZE 8 // 16BIT format quaternions
#define FSTKCRLFSIZE 2 // Carriage Return, Line Feed

// There can be up to 4 stations active at the same time in the FASTRAK.
* #define FSTK..NUMSTATIONS 4 0

#define MAXPACKETSIZE 91 1/ All of the above summed together
#define BUFFERSIZE 364 / MAXPACKETSIZE*FSTKNUMSTATIONS

/16BIT format requires scaling information for the various types of
II data:

* #define FSTK_.16BIT_TO_CM (300.0/8192) ' 4
#define FSTK._16BITT_TO_INCHES (118.11/8192)
#define FSTK_ 16BI T_TO_DEGREES (180.0/8192)
#define FSTK_16BITTOQUAT (1.0/8192)

// Station numbers
enum FSTK_stations

FSTK._STATIONI = 0, // This may be bad programing style, but
FSTKSTATION2, // these are used to index into arrays.
FSTKSTATION3,
FSTK..STATION4 };

// The FASTTRACk can return up to 6 different types of data.
* #define FSTK_NUMDATATYPES 9 /I number of data types 0

enum FSTKdatatypes
FSTKCOORDTYPE = 0, I/ This may be bad programming style, but
FSTKEULERTYPE, // these are used to index into arrays.
FSTK_XCOSTYPE,
FSTKYCOS-_TYPE,
FSTK_ZCOSTYPE, .0
FSTK..QUATTYPE,
FSTKI 69B ITCOORDTYPE,
FSTK_16BIT_EULERTYPE,
FSTK_16BIT_QUATTYPE);

152

-law

- S

II units used to measure the FSTK positions
enum FBTKuni ts
/ (FSTKLINCH, FSTKCENTIMETER };

// FastrakClass definitions

class FastrakClass

private:
int port.fd; J/ the serial port file descriptor
char port-name[PORTNAME..SIZEI; // the name of the Fastrak port

// info for the individual byte buffers for the four Fastrak stations.
Schar datarec[FSTK-J4T.3STATIONS][MAXPACKETSIZE];

char datarec_buf[FSTK_NUM_STATIONS][MAXPACKETSIZEI;
// data records for each station

short maxdatarecsize; // size of the largest station pkt
short datarecsize[FSTKNUM_STATIONS]; // data rec. size for each station
short datatype_mask[FSTKNUM-STATIONS]; // data types for each station
short datatypestart[FSTKJNUJMSTATIONS][FSTKNUMDATATYPES]; 0

* /I the position of each requested
// type in the data record

short fstkpacketsize; // the sum of the data record sizes
// for all the active stations, i.e.,
// the size of a complete data

* // packet returned from the Fastrak
char readbuffer[BUFFERSIZE]; // pollContinuously's temporary buffer
unsigned int read_1ndex; // current location in temp buffer

// Process ID and process for the serial port polling process.
int parpoll.pid;
friend void pollContinuously(void *); I/ the sproc'ed fcn to read port

* void getPacket(); /1 read a packet from the FSTK

// locks and binary semaphores for ensuring mutual exclusive access
// to critical sections.
// Note that a boolean flag, parami.seting, is used together with the

* // semaphore. Basically, when the consumer process is already
// holding the binary semaphore, it should not request the semaphore
II again. Otherwise, deadlock would occur. It is needed when a
// consumer data record parameter setting method needs to call
/1 another such method. Now there is one such case, setstate()
II calling specify.datatypet). Note that paramset_flag should never
I be used in the data producer process. S

* ulock_t datalock; /I a lock used to guide switching data buffers
usemat *paramsema; II a binary semaphore used to guide setting data

// packet parameters.
usptrt *arena; // arena used to create lock and semaphore

153

S. .•, , ' •i. 7i., "0

I/ Boolesn flags
int paramset_flag; // TRUE if the data packet parameters are being set. 1
int valid_flag; I/ TRUE if initializing the FSTK is successfull
Ant is._polling-flag; // TRUE if the papallel polling process is not

// being suspended
volatile int dataready.flag; // TRUE if new data has been read

// after control parameter update
volatile int kill_flag; // TRUE if exiting the parallel polling

//II process has been requested

// Fastrak state variables:
int active_setting[FSTKNULSTATIONS]; // h/w switch settings
int activestate[FSTKNUMSTATIONS]; // s/w setting
float aligrment[FSTKPf4.STATIONSI[3][3];// pp. 42-50 in User's Manual
float boresight[FSTK-JUh..TATIONS][3); // pp. 51-55
float hemisphere[FSTKNU)MSTATIONS](3]; // pp. 88-92
FSTKunits units; // CENTIMETERS and INCHES

// private methods
void initState(; // init the member variables
int readConfig(ifstream &configfileobj); // read the config file
int openIOPort(; // open the FSTK serial io-port 0
int initMultiprocessing(); // initialize multiprocess mode

int checkState(); // check which station is active

void prepareToRead(); // parallel/serial i/f to getPacket

int sendCommand(char* command, // send a command to the FSTK
int length,
char* source);

void convertData(char* data, // convert IEEE buffer data to n
int numfloats, // floats: DOS ordered bytes to
float datadest[]); // Unix (reversed) 0

void convertl6BITData(char* data, // convert a 16BIT format buffer
int num_floats, // to n IEEE floating point nums
float scale,
float data-dest[]); I°.

// functions for debugging and error checking
void debugData(char *datastore, int numof_bytes);
int detectError(); // detect errors in data packet
void reportStateError(char* location,

FSTKstations stationnum);
int checkReadError(FSTK_stations station_num, char* source,

FSTK.datatypes datatype);

// Define what values are requested from the station.
// Values requested should be ORed together using the mask.
// Return TRUE if the operation is successful.

154

// See page 97-111, the 3SPACE USER'S MANUAL.
int setDataTypes(FSTKstations stationnum, short mask); [

II Set the state of the station and return TRUE if successful.
// See page 128-131, the 3SPACE USER'S MANUAL.

II Note that when the state update is from FALSE (INACTIVE) to TRUE
/ (ACTIVE), a call

II to setDataTypes() should follow the call to setstate{) to
I/ specify the data types. By default, FSTKDEFAULTJASK is used.
int setState(FSTKstations stationnum, int activeflag);

/I alignment reference frame functions:
void getAligriment (FSTKstations station_num,

float origin[3],
float x._point[3], float y-point[31);

int setAlignment (FSTK.stations stationnum,
const float origin[3],
const float x-point[3],
const float y..point[3]);

int resetAlignment(FSTK..stations stationnum);

// boresight function:

int resetsoresight(FSTK_stations stationnum);

// active hemisphere functions.
void getHemisphere(FSTK_.stations stationhum, float zenith[3]);
int setHemisphere(FSTK..stations stationnum, const float zenith[3]);
int rese:Hemisphere(FSTKstations station_num));

// position measurement units. FSTK.CENTIMETER is default.
int setUn~ts(FSTK.units posunits);
inline FFTKunits getUnits() const {

return :units);

public:
/. This constructor expects the name of a configuration file for the
// FASTRJIýY and a flag list indicating data types desired.
FastrakClass (ifstream &configfileobj,-

O short datatype_flags = FSTKDEFAULT_.JASK); •
-Fastrak lass(); // destructor

// Returr. true if initializing the FSTK is successful.
inline it exists() const I

returr, valid_flag;

// In mu ciprocess mode, suspend and resume the execution of the
// parallel polling process, the data producer. During the
// suspension, no new data is produced. Return TRUE if the
/I the is successful.

* 0
155

jnt suspendo; 14
void resumeM);

/1 Gt the state of the station.
inline int getState(*SMSKstations station-num) const

return(activestate(stationhum]);

// move data to second buffer (reduces lock overhead)
void copyiuffer(];

// Read the specified type of data from the specified station.
// For a successful read, datadest(] contains the result.
// Note that data..dest[l must be a 4-element array for quaternions;
1/ for the other types of data, datadest[] is a 3-element array.
// Return TRUE when the read is successful.
int readData(PSTK._stations station_num, FSTKdatatypes datatype,

float data..dest[]);

// Read a homogeneous transformation matrix of the sensor with
// respect to the transmitter. For a successful read, the upper left
// 3x3 submatrix of matrix!] [] contains the rotation matrix 0
// constructed from the quaternion, euler angles, or X-, Y- and
// Z-directional cosines (depending on which type was selected) of
/1 the station which results in the X-cosine in the first row,
// Y-cosine in the second, and Z-cosine in the third; if
// FSTKCOORDTYPE has been selected, the last column contains the
// position of the station, otherwise, it is filled with 0. Return
// TRUE if the read is succesful. Otherwise, return FALSE.
int getHxatrix(FSTK_stations station..num, float Hmatrix[4] [4]);

// Read the current position and orientation of the station. together.
// On a successful return, posit[] contains the position and orient(]
// contains the orientation of the station. The type of the
// orientation, euler-angle and quaternion, is determined by
// orient-type. Note that if orient-type is FSTKEULERTYPE, orient
// is a 3-element array. Otherwise, it must be a 4-element array.
// Return TRUE if the read is succesful. Otherwise, return FALSE.
int getPosOrient(FSTK..stations stationnum,

FSTK.datatypes orient.type,
float pos[3], float orient[]);

// Boresight functions
void getforesight(PSTK stations stationhum, float orient[31);

int setBoresight(FSTK_stations stationnum, const float orient[3]);

Oendif

156
*,

~~ -

S .:.: •,;!,- :,• •." .. ! .!.!:• , •..., • " " ': • : ;• i•. •.0 0 @

// File FastrakClass.cc
// Author Scott McMillan
II :Naval Postgraduate School
II : Code CS 4
II :Monterey, CA 93943
//: mcmillanecs.nps.navy.mil
II Project NPSNET - Individual Combatants/Insertion of Humans into VEs
/ Created August 1995

II Summary This file contains the declarations for a C++ class to
/I :manage the Polhemus 3Space Fastrak.

// :For detailed information on the operation of the Fastrak,
it : refer to the 3SPACE USER'S MANUAL.
//

S// :This program was based on the ISOTRACK program written by
// :Paul T. Barham in Sept. 1993 for single sensor case. Major
// :modifications have been made to adapt to multiple sensor
// :case. The resulting code, written by Jiang Zhu in
// :Jan. 1995, underwent another major modification to support
// :binary data in continuous mode.

* Copyright (c) 1995,
* Naval Postgraduate School
* Computer Graphics and Video Laboratory
* NPSNET Research Group
* npsnetocs.nps.navy.mil

"* Permission to use, copy, and modify this software and its
* documentation for any non-commercial purpose is hereby granted
* without fee, provided that (i) the above copyright notices and the
* following permission notices appear in ALL copies of the software
* and related documentation, and (ii) The Naval Postgraduate School
* Computer Graphics and Video Laboratory and the NPSNET Research Group
* be given written credit in your software's written documentation and
* be given graphical credit on any start-up/credit screen your
* software generates.
* This restriction helps justify our -research efforts te the
* sponsors who fund our research. 0

* Do not redistribute this code without the express written
"* consent of the NPSNET Research Group. (E-mail communication and our"* confirmation qualifies as written permission.) As stated above, this
" restriction helps justify our research efforts to the sponsors who

* fund our research.

* This software was designed and implemented at U.S. Government
* expense and by employees of the U.S. Government. It is illegal
* to charge any U.S. Government agency for its partial or full use.

157

* 0 " :' "

* THE SOFTWARE IS PROVIDED RAS IS' AND WITHOUT WARRANTY OF ANY KIND,
* EXPRESS IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY j O
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

* E-Mail addresses: -.

* npsnetlcs, nps.navy.mil
* General code questions, concerns, comments, requests for
* distributions and documentation, and bug reports. [
* npsnet-irnfo6cs.nps.navy.mil
"* Contact principle investigators.
"* ROverall research project information and funding.

* Requests for denonstations.
*

" Thank you to our sponsors: ARL, STRIC014, TRAC, ARPA and DMSO.
**

#include <stdlib.h> // C standard library stuff
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <bstring.h>
#include <iostream.h> // For C++ standard I/O stuff •
#include <fstream.h> // For C++ file I/O stuff
#include <unistd.h> // For standard Unix read, write stuff
#include <errno.h>
#include <fcntl.h> // For file constant definitions and flags
#include <termio.h> // For terminal I/O stuff
#include <termios.h> I/ For terminal I/O stuff
include <sys/types.h> // For system type stuff
#include <sys/prctl.h> // For process control stuff
*include <sys/signal.h> // For process signal stuff

#include 'FastrakClass. t

//#include 'jointmods.h•

1/ the file for creating the shared data arena used by parallel
/ processes.
#define IARENA_FILE 1/tnp/fastrak.arena.datal

// the permission option to chmod command-to alter the permissions on
* // the arena file to be read and written by everyone.0

#define ARENAPERMISSIONS 0666

// other convenient constants

//#define DEBUG 1
Odefine BELL (char) 7

#define FSTK_X 0
4define FSTKY 1
#define FSTKZ 2
#define FSTKAZ 0 // azimuth

138

*

#define PSTK_2L 1 II elevation
Odefine FSTK_RO 2 // roll

#define RTOD 180.0/M_PI
*define DTOR)_PI/180.0

// local functions
static void fsighandler(int sig, ..);

/---
// Function: report-.syserr

I/ Returns:
/ Parameters:
I/ Summary: Report system errors
/---

static void report.syserr(char* errinfo, char* location)

cerr << BELL << "Error in I << errinfo << .\nl
<< I Error Number in *FastrakClass.cc*l << location << :-
<< errno << ";\nl;

perror(I Error Message');
I // end reportsyserr()

I---
// Function: pollContinuously
/ / Returns:
// Parameters:
// SSummary: This is the data producer which is called in multiprocess •
// : mode in a process running in parallel with the one that
I/ : calls the constructor and most of other methods of
// : FastrakClass'. It continuously reads the Fastrak for
// : data and stores the data in the datarec. This process runs
I/ : until the 'kill-flag, is set by the consumer.

..--
void pollContinuously (void* tracker-object)

s.atic void (*temp..signal) (...);
FastrakClass *tracker = (FastrakClas*) trackerobject;

// The following call is necessary for-this child process to actually
/I respond to SIGHUP signals when the parent process dies.

prctl (PRTERMCHILD);

if ((signal (SIGTERM, (void (*)(...))f_.sighandler)) - SIG_ERR)
perror([FastrakClass:\tError setting SIGTERM handler -\n),

if ((signal (SIGHUP, (void (*)(...))f_sig_handler)) == SIGERR)
perror(1FastrakClass:\tError setting SIGHUP handler -\n);

if ((temp..signal signal C SIGINT, (void (*)(...))fsig_handler))
, SIGDFL) (

159

S - S ••i. •: :,•.: :;•i. • •:•••• . .• .

if ((signal (SIGINT, SIGIGN) . SIGNRR)
perror('FastrakClass:\tError setting SIGINT ignore -\n);

if ((signal (SIGQUIT, (void (*)(...))ff_sig_handler)) - SIG_3ERR)
perror(IFastrakClass:\tError setting SIGQUIT handler -\n);

#if DEBUG -

* cerr << 'Fastrak polling process initiated.- << endl;
#endif

if (write(tracker->porttfd, "C', 1) != 11H

"pollContinuously');

while (!tracker->kill_flag)
tracker->getPacket o;

I /I end while loop

if (write(tracker->portfd, "c", 1) =){
report.syserr(Isending FASTRAK c command', 0

"pollContinuously');

tracker->kill-flag = FALSE;

#if DEBUG
cerr << 'Fastrak polling process terminated., << endl; ¼#endi f

exit (0);
// end pollContinuously()

/1---J
// Function: f_sig_handler
I/ Summary:
// Parameters:
/ / Returns:

/---O ~~void f_sig_handler(int sig,..

if ((signal (sig, SIGIGN)) == SIGQ_.ERR)
perror('FastrakClass:\tSignal Error -\n 'I;

switch (sig) {
case SIGTERM:

exit (0);
break;

case SIGHUP:
if (getppid() ==1

160

7 i0.t

: ' , :• ' : • ' - . 'i - ' '.. "k '" " - " , 'L : ',' " • : : • ' ,'

P 'mClam 54

Corr << 'DEATH NOTICE:, << endi;
cerr << O\tParent process terminated.'

<<« endi;
cerr << '\tFastrakClass terminating to prevent orphan process.,

«< endi;
eXit(O);

break;
* case SIGINT:

Cerr << 'DEATH NOTICE: FastrakClass exitting due to interrupt-
<< signal., << endi;

exit (0);
break;

case SIGQUIT:
Cerr << 'DEATH NOTICE: FastrakClass exitting due to quit-

*< * signal., << endi;
exit (0)
break;

default:
Cerr << 'DEATH NOTICE: FastrakClass exitting due to signal:

<< sig << endl;
exit (0);
break;

signal (sig. (void (*)(...))f sigjiandler)

IIFastrakClass class methods

--
1/ Function: FastrakClass: :FestrakClaes
II Returns:

IIParameters:
1/ Summary: constructor for FastrakClass object

FastrakClass: :FastrakClass (ifstream &config-.fileobj, short datatypej lags)

IIInitialize instance variables.
initStat*(O;

// Read in the configurations and open the FASTRACK port.
if ((validj lag = readConfig(config..fileobj)) -= TRUE)

validjflag a openIOPorto;

if (valid~flag){
* IIthe ^Y command for resetting FASTRAK(

IIRefer to pp 76, the 3 SPACE USER'S MANIUAL for details.
static char command(I (X19 1;

161

~J

cerr << 'Initializing Fastrak to start-up state., << endi

<< ifhstae bot1 seconds... 1

if (wi*prW omad)= 1

* sleep(2);
for (int i=9; i>-1; 1--)

cerr << i <<
sleep (1)

cerr << endl;

if ((valid~flag) && (valid.f lag =checkStateo))
valid-flag a setUnits (FSTK_.CENTIMETER);
for (int i = 0; i < FSTK_)RINULSTATIONS; ++.)

if ((valid..flag) && (active-.state~i]))
* ~validf lag =setDataTypes((FSTK~stationS)i, datatype..f lags);

for (int stationjium =0; station..nuxn < FSTKNUMSTATIONS; station__.num++)
if ((validjflag) &&(active_atate[station~jiun]))

* valid~f lag =setHemisphere((FSTK..stations)station _num,
hemisphere (station__nun]);

if (valid~flag)
valid~f lag = setAligniment ((FSTI(.stations) station..num,

aligunment(station..nun] [0],
aligniment[station~num][(1],
aligunment(station~num] 12]);

//mcinillan - 950814 - new code to read IEEE binary format data
if (valid..flag){

* /1Enable binary output format from the FASTRAK.
IIRefer to pp 114, the 3 SPACE USER'S MANUAL.

if (write(port~fd, If' 1) 1. 1)
report~.syserr(Isending FASTRAK f command',

"FastrakClass::FastrakClass");
valid..flag =FALSE;

162

AVA

0

FaftbakChOSS.cc 74

if (validflag) (
// Initialize the multiprocess mode, i.e., creating the locks
// and semaphors and sprocing the Fastrak data producer process.
valid_flag = initMultiprocessing(;

if (validflag)
is-polling-flag = TRUE;

#if DEBUG
cerr << 'The FASTRAK object constructed.\n';
if (validcflag) {

cerr << 'The FASTRAK intialization is successful.' << endl;

else {
cerr << 'The FASTRAK intialization is unsuccessful., << endl;

#endif

} // end FastrakClass::FastrakClass()

I---
// Function: FastrakClass::-FastrakClass
/1 Returns:
// Parameters:
// Summary: destructor for FastrakClass class

--
FastrakClass::-FastrakClass()

#if DEBUG
cerr << 'Fastrak destructor called.\nl;

#endif

if (validflag)
I/ In multiprocess mode, signal the producer process to die.
II Then, free the lock and semaphore.

if (parpollpid -1)
kill-flag = TRUE;
if (!ispolling_flag) usvsema(paramsema);
while (killflag);
sleep(l)C

parpoll.pid = -1;
usfreelock(datalock, arena);
usfreesema(paramsema, arena);

163

|0

0... . -__ 0 O.0.... 0• _, 0 00• 00 .. .

//Flush all characters from tne serial port arnd then close it.4
tcf lush (portjfd, TCIOFLUSHj;
close (port...fd);
valid.f lag = FALSE;

1 1FastrakClass: :-FastrakClass()

I---
II Function: initState
// Returns:

//Parameters:
II Summary: Initialize instance variables to their default states.

I---
void FastrakClass: :initState (

bzero(read...buffer, BUFFER_.SIZE);
read-..index =0;
max..datarec_size =0

parpoll...pid=-;
param...set..f lag =FALSE;

is~pollingj lag =FALSE;

daita_ready-.f lag FASZ
kill-flag = FALSE;

//Initialize hemispheres and alignments.
IIRefer to pp 42 - 50 and pp 8B - 92, the 3 SPACE USER'S MANUAL* 4
/1for the default values.

for (int station..num = 0; station__xium < FSTKJ-UM_STATIONS; station~num++)
hemispheretstation~jium) IFSTK..XI = 1.0;
hemisphere[station~nun] [FSTK..Y] = 0.0;
hemisphere[station...num] [FSTK_.Z] = 0.0;

boresight[station-numl CFSTK...AZ] = 0.0;
boresight~stationýnumn] FSTK...EL] = 0.0;
boresight~station~nunO ?FSTK..RO] = 0.0;

1/origins
aligniment(station~num] [0] FSTK.JC] = 0.0;
aligrnment fstationjium] [0] [FSTK.Y] =0O.0;
alignment [station...num] [0] (FSTK...Z] = 0.0;

IIX directiona
alignment [station..numl~] (]FSTK__.XI = 1.0;
aligrnmenttstation~num[] E][FSTK..Y] = 0.0;
alignimentlstation~num] [1][FSTK...Z] = 0.0;

/1Y directions
aligninent(station..num] [21[FSTKXI = 0.0;
aligrnment~station~numl [2] [FSTI(.Y) = 1.0;
alignxnent[station..num] [2] [FSTK_..ZJ = 0.0;

164

C I I 9

S99

// Initialize data record parameters.
accivestate[stationhum] = FALSE;
datarecsize[station..num] = 0;
bzero (datarec_buf [stationnum], MAXPACKETSIZE);
bzero(datarec stationnum], MAX_PACKETSIZE);

for (int typenum = 0; type..num < FSTKNUMDATATYPES; type..num++)
datatypestart[stationnum] [typenum] = -1;

fstk..packetsize = 0;
) / end initState()

//--
II Function: readConfig
/I Returns: TRUE if the read is successful. Otherwise, return FALSE.
II Parameters:
// Summary: Read the configuration file for the FASTRAK. Called by a

/ :FastrakClass" constructor to do initialization. They should
I/ : not be called elsewhere.
//--

#define MAXCONFIGFILE_LINESIZE 255
#define CONFIGFILECOMMENTCHAR #f

int FastrakClass: :readConfig(ifstream &config_fileobj)

int success = TRUE;
char tmp_sstr[MAXCONFIGFILE_LINESIZE];
int station num;

while (configfileobj >> tmp_str)

/I When a comment char is read, skip the rest of the line.
if (tmpstr[0] == CONFIGFILE_COMMENTCHAR) (

config-fileobj .getline (tmp_str, MAX_CONFIGFILELINESIZE);
I
else if (strncmp(tmpstr, "PORT', 4) == 0)

config.fileobj >> port_name;

else if (strncmp(tmp str, -WANTEDSTATIONS-, 8) -= 0) { 0
int state;
for (station..num = 0; stationnum < FSTK_.JUMSTATIONS;

station-num++)
config_fileobj >> state;
active__state(stationnum] = state;

I 1

165

else
char param~str[30];
jint i, j;
for (mnt stationjlnum 0; stationjium < FSTKYUK..STATIONS;

station..jurn++)(

sprintf (param...tr, ISTATICN%dPA.AMI, station...num+l);

do 1~
* ~~if (tmp~str[0] == CONFIGFILE...COMMENT...CHAR)

config-fileobj .getline(tmp...str, MAXLCONFIGFILELINESIZE);
else if (strncmp(tmp...str, param-str, 10) == 0)

config-fileobj »> param...name;
for (i = 0; i < 3; i++)

* ~config...fileobj >> hemisphere(station~jium i~i];

for (i = 0; i < 3; i++)(
config-.fileobj >> paraniuname;
for (j = 0; j < 3; j++)

config...fiieobj >> align~ment~station...numJ [iJ [j];

config...fileobj >> tmp...str;
break;

else
success = FALSE; i .

* cerr << BELL << 'Error in reading config file. \no
<<0in *FastrakClaos .cc*FastrakCJlass: :readConfig;I
<<Iillegal string: I << tmp...str << endl;

while (config...fileobj », tmp...str);

//end for

/end if I
#if DEBUG

int i, J;
cerr <<~ readConfig:\n << I FASTRAK port: << port~name << \nO

<< Stations requested: 1;

for Ii = 0; i < FSTKJP.ThLSTATIONS; i++)
cerr << activesatateti) <<*

cerr << endl << endl;

for (I= 0; i < FSTK_$UWLSTATIONS; i++) I
6cerr << 'STATION' << i+1 << IPARAM:\nl;

cerr << I hemisphere:\tl;
for (j = 0; j < 3; J++)

cerr << hemispherefi][jJ << I
cerr << \n origin:\t;

166

IlkI

for (J = 0; j < 3; j++)
cerr << alignment(iI [0][j] << ;

* cerr << I\n x-point:\tl;
for (j = 0; j < 3; j++)

cerr << alignment(i] E[]I] <<
cerr << I\n y_.point:\tl;
for (j = 0; j < 3; j++)

cerr << alignment[i] (2][j] << ; ,
* cerr << endl;

cerr << endl;

cerr << IFASTRAK configuration parameters read.\nl;
*endi f

* return (success);
I // end FastrakClass::readconfig()

- --..
1/ Function: openIOPort
II Returns: TRUE for a successful opening. Otherwise, return FALSE.
// Parameters:
// Summary: Open the FASTRAK io-port
II..
int FastrakClass: :openIOPort()

int success = TRUE;

// Test to see if the FASTRAK if on.
if ((port-fd = open(port-name, O_RDWRIONONBLOCK)) == -1)

success = FALSE;
report.syserr(lopening the Fastrak port',

"FastrakClass: :openIOPort);

else{
char command[5], buffer[100];
strcpy(command, lli\r');

if (write(port-fd, command, strlen(command)) =-1)
success = FALSE;

* reportsyserr(-sending FASTRAK 1 command',
"FastrakClass: :openIOPortI);

sleep(l);

if ((success) && (read(portfd, buffer, 100) ==-1))
• success = FALSE;

reportsyserr ('reading FASTRAKI,
"FastrakClass: :openjOPort');

167

* 0

Doabokigra when polling the FASTRAK for data. 1
if ((success) &&f ((port..fd = open(port-name, ORDWR)) ==-1))

success = FALSE;
report...syserr(lopening the Fastrak port",

IFastrakClass: :openIOPortI);

* else if (success)
struct termio term;
memset(&tetm, 0, sizeof(term));

term.c...iflag = IXOFF; /* FIX14E
term.c...flag - 0;

* term.c~cf lag = B96001CS8ICLOCALICREADIHUPCL;
term.c...lflag =0;
term.c-line = 0; IILDISCl;
term.c..cc[VMIN1 0;
term.c~cc[VTIME] 5;

if (ioctl(port...fd, TCSMR, 0) == -1){0
success = FALSE;
close (portfd);
report~syserr(Isending a BREAK to the Fastrak port",

IFastrakClass: :openIOPort");

else if (ioctl(port~fd, TCSETAF, &termn) =

0 success =FALSE;
close (port..fd);
report...yserr(-setting the Fastrak port parameters',

IFastrakClass: ;openIOPortI);

* ~ .Just in case the fastrak was accidentally left in continuous mode?
if (success)

chrdata[100];

mnt nbr;
while ((nbr - road(portjfd, data, 100)) > 0) I

//cerr <« "Warning: cleared I «-nbr << bytes from Fastrak buffer,
* ii << I in openIOport.' << endl,

//debugData (data,nbr),

if (success)
if (tefrlush (portd, TCIOFLUSH) -1) ;
rsuccess) FALSE;
close (port..fd);
report gyserr(Iflushing the Fastrak port',

/FastrakClaas:a:opeIOPorto);

#if DEBUG
cerr << FASTRAK io-port, <<« port~jiame <<, opened., << endi;

#endif

return (success);
) iend FastrakClass::openIOPort()

/---
II Function: checkState
// Returns: TRUE if all the requested stations are available.

//: Otherwise, return FALSE.
// Parameters:
// Summary: Check for the availability of the FASTRAK stations.
//--
int FastrakClass: :checkState()
{

int success = TRUE;
char command[51;

0 char data[100];

// Construct the "l ccmmnand to get the states of the stations.
// Refer to pp 128 - 131, the 3 SPACE USER's MANUAL for details.
// Choose any station to get the states for all stations.
strcpy(command, 1ll\r");

* if (write(portfd, command, strlen(ccmand)) == -1) {
success = FALSE;
reportsyserr(sending FASTRAK I command',

"FastrakClass: :checkStatel);

// Find out which station is active by hardware configuration.
if (success == TRUE) (

// 951002 - mcmillan - IMPORTANT BUG FIX:
// do raw tty processing to get the answer because on the faster
I/ machines and especially the onyx platforms the read occurs
/I sooner than the data is ready•
coast int NM3_BYTES a 9;
const int MAX_POLLRETRIES 100000;
int count a 0;
int num_tries z 0;
int nbr;

169

e •

h~MC144
while ((count < NtNBITsr)

(nuu-tries <NAXLJOLL.)BRVIEs)

((nbr - read(portjfd, &datalcount), 1)) 1- -1))

count +- nbr; 4

if (count in NU14LDYTES){
* success =FALSE;

if (num~tries -- 4AX..QLL..RM ETEs)(
cerr << BELL < 'Error: too many retries reading fstk port\n";

else
cerr << BELL << "Error: fstk port read failed\nl;

cerr <<« in *FastrakClass.cc*FastrakClass::checkState\nl;

#if DEBUG
debugData(data, 9);

#endif

if (success -= TRUE)
for (mnt i = 0; i < FSTK....UK.STATIONS; i++){

active-settingtil = (data~i + FSTKHEADER_.SIZE] = 1)

if (active~setting[i])
* ~if (!active~..state[i])

setState ((FSTK..stations) i, FALSE);

else
if (active~state[i])

success = FALSE;
cerr << BELL0

<< 'Error in setting FASTRAK station state.\nI
<< in *FastrakClass~cc*FastrakClass::checkState\n*
<< Station' << i+1 << " is required to be active.\n'
<< However, it is not set to be active by the,
<< hardware switch.\n';

debugData(data, 9);

Iend for

else

report-syserr("reading FASTRAKI, 'FastrakClass: :checkStatel);

* #if1 DEBUG
cerr << 'The states of the FASTRAK stations checked." << endi;

#*ndif

170

7 ..

0M *Cm

return(success);
) II end FastrakClass::checkState()

II Function: initMultiprocessing
II Returns: TRUE if the initialization is successful. Otherwise,

1/ return FALSE.
I Parameters:
II Summary: Initialize for multiprocess mode, including getting locks
1/ : and semaphores and sprocing a child process for polling
// : the FASTRAK.
II--
int FastrakClass: :initMultiprocessing()

int success = TRUE;

// Create an arena file to get the needed lock and semaphore
if ((arena = usinit(IARENAFILE) == NULL)

success = FALSE;
report syserr(Igetting an arena file',

"FastrakClass: : initMultiprocessing');

else (
I/ Set up the arena file with read and write permissions for
// everyone.
if (usconfig(CONF_CHOOD, arena, ARENA-PERMISSIONS) == -1)

success = FALSE;
report-syserr(Iconfiguring an arena,,

"FastrakClass: : initMultiprocessing");

Ii Create a lock to provide mutual exclusive access to the data
// buffers. Refer to getPacket() for more info.
if (success && ((datalock = usnewlock(arena)) == NULL))

* success = FALSE;
reportsyserr(-creating a lock',

SFastrakClass: : initMultiprocessing);

else
usinitlock(datalock);

II Create a binary semaphore for providing mutual exclusions so
I/ that when the data record parameters are being set, the data
II producer waits until the setting finishes. Refer to
1/ getPacket(] and setDataTypes() for more info.
if (success &&

((paramsema a usnewsema(arena, 1)) == NULL))
success a FALSE;
reportsyserr(-creating a binary semaphore',

"FastrakClass: : initMultiprocessing");

0}

171

0 _

- - ! W iiWW'•

MUM

// Fork the parallel data producer as a lightweight thread which
/Ishares the data space with its parent process that is the

* /I consumer of the FASTRAK data.
if (success) (
if (success) = sproc(pollContinuously, PR_.SALL, (void *)this);

if (parpoll~pid -1j
success = FALSE; ,
report.,.syserr(Ispawning the producer process",

"FastrakClass: : initMultiprocessing'); .

else
signal (SIGCLD,SIG-IGN);

#if DEBUG

cerr << 'pastrak poll process spawned: pid =

<< parpoll.pid << endl;
• ~#endi f

I // if arena

return (success);
/ / end FastrakClass::initMultiprocessing() 0

I,---
// Function: getPacket
1/ / Returns:
// Parameters:

O // Summary: Read a packet from the FASTRAK. In single process mode, 1 0
// : it is called when the FASTTRACk user requests a data. In
// : multiprocess mode, it is continuously called by the data
// : producer, po!iContinuously), in a light weight process.

--
void FastrakClass: :getPacket()

O int full_.buffer;

// The following piece of code is a critical section in multiprocess
1/ mode. During a read operation of the FASTRAK, the data record
1/ parameters cannot be changed, e.g, through setDataTypes()
1/ which runs in parallel with this method.

* if (parpoll_pid !=-) {-

if (uspsema(paramsema) 1) { // entering the critical section
report-syserr'(getting semaphore,

"FastrakClass: :getPacket');

*)

172

'AL

Vinkrakcmac 17J ~ In serial mode, ask for a packet from the FASTRAK. I
IIRefer to pp 120, the 3 SPACE USER'S MANUAL.

if (write (port...fd, IP. 1) !=1)
report~syserr("sending FASTRAK P command',

'FastrakClass: :getpacket'f);

4unsigned mnt num_.bytes~to...read =BUFFER...SIZE - read.Jndex;
mnt num_.ytes_read = read(port-.fd,

&read...uffer [read~index],
numbytes...to...read);

if (num...bytes-read > num-bytes~to,..read)
cerr << 'Error: fstk read too many bytes (nbr, nbtr):

<< num-bytes-read << 1,1 << num-bytes~to...read

if (num...bytes..yead == numjo..ytes...to...read)
full~buffer = TRUE;
cerr << 'Warning: fstk read max bytes:

<< num-bytes-read << '.\nfl;

IIprocess the data read
if (num....ytes-read > 0)

unsigned mnt index = 0;
readJ'index += nunL..bytes...read;

IIwhile there is enough information for a packet from a
//single station process the data:

while (!kill.f lag && ((read..index - index) > maX_datarec...size))

//make sure header info is the first few bytes
if ((read-..buffer~index] == 0x30) &&

((read~..buffer~index+1]&0x-f0) zz 0x30) &&
* ~~(((int) (read.buffer~index+1]&xOxOf) - 1) < 4)) S

int station..num = (int) (read~buffer(index+1]&OxOf) -1;

//entering the critical section
if (ussetlock(datalock) a- -1)

report-o.yserr(Igetting lock', 'packetizer');

memcpy (datarec..buf [station...num1, &readJbuffer[index),
datarec~size[station~num]);

data...ready..f lag =TRUE,

173

IL0

e i c 11 1*
usuneetlock(datalock); // unlocking

//exiting the critical section0"

index += datarec-size~station-num];
else {/ find the header info and hopefully resynch.

cerr << 'Warning: resynching fstk -

<< (index, read_index):d e (n
<< index << ", << read-index << ")\n;

while ((index < (readindex-l)) &&
!((read-buffer[index] == Ox30) &&

((readbufferjindex+l]&OxfO) == Ox30) &&
(((int) (readbuffer[index+l]&OxOf) - 1) < 4)))

cerr << hex << (int) read..buffer[index] << dec

index++;

cerr << hex << (int) readbuffer[index] <<
<< (int) read_buffer[index+1] << dec
<< 'I' << I index: •< index << endl;

6 0
} while readindex-index

// when done, shift the rest of the buffer down to the
// beginning.
if (index != read_index)

if (index > read-index) •

Scerr << OError: fstk shifting too many bytes (I
<< readindex << 1- << index << ').\nl;

I
else

memcpy(readbuffer, &read_buffer (index],
read_index- index);

0 1

read-index -= index;
index = 0;

} if num-bytes-read

} while (full-buffer && .kill-flag);

/I exiting the critical section
if (parpollpid != -1) usvsema(parammema);

) end FastrakClass: :getPacket()

174

* to

!,

/ / Function: sendComnand
S// Sumnary: Send a command to the FASTRACK.
i/ Parameters: command string, its length, and initiating fcn name
// Returns: TRUE if the operation is successful. Otherwise, FALSE.

.---
int FastrakClass::sendCowmand(char* command, int length, char* source)

int success = TRUE;

(source);
#if DEBUG

cerr << 'command from << source << :
<< command << endl;

*endif

// This is a critical section in multiprocess mode.
if (parpoll_pid != -1) {

if (uspsema(paramsema) z= -1) { // entering the critical section
success = FALSE;
reportsyserr ("getting semaphore', IFastrakClass: : sendCoImandI);

I} S

if (write(port-fd, command, length) == -1)
success = FALSE;
reportsyserr (sending FASTRACK command', IFastrakClass: : sendCommandI):

data_ready_flag = FALSE; // See getPacket() for when it is set to TRUE.

I/ exiting the critical section
if (parpollpid := -1) usvsema(paramsema);

*if DEBUG
cerr << IFASTRAK command sent: source being I << source << «.\n';

#endi f

return(success);
I // FastrakClass::sendCommand()

I---
// Function: convertData
I I Returns:
// Parameters: data record ptr, number of elements, output vector
// Summary: Convert a DOS ordered bytes to Unix order (reverse)
/.---
void FastrakClass::convertData(char* data, int num-floats,

float data-dest[])

char *ptr * data;
char *fptr = (char *) datadest;

175

for (Unt i=0; i<num-floats; i++)
*(fptr+3) = *ptr++;

*(fptr+2) = *ptr++;
*(fptr+l) = *ptr++;
*(fptr) = *ptr++;

fptr += 4;

} // FastrakClass::convertData()

I---
I/ Function: convertl6BITData
/ / Returns:
// Parameters: data record ptr, number of elements, scale, output vector
// Summary: Convert a Polhemus's 16BIT format to IEEE floating point

.---
void FastrakClass::convertl6BITData(char* data, int num.floats,

float scale, float datadest(])

char *ptr = data;
char lobyte;
char hibyte;

int sign-flag, num;

for (int i=0; i<numfloats; i++) I
lobyte = *ptr++;
hibyte = *ptr++;
sign_flag = (int) hibyte&0x040;
num = ((hibyte << 7) + (lobyte&Ox7f))&OxOOlfff;
if (signflag)

num -= 0x02000; // 14 bit 2's complement conversion.

datadest[i] = scale*num;

// FastrakClass: :convertl6BITData()

176

* 0

Fa' • oi•nci 21

S//

r/ Function: debugData
•// Returns:
.I Parameters:
// Summary: Write num_ofbytes starting from datastore as characters
II : to cerr. This is a convienience function used to examine
// : the data packet read in from FASTRAK.
//--

Svoid FastrakClass::debugData(char *datastore, int num-ofbytes)

cerr << "Record length: " << numofbytes << '\n';
cerr << ;
for (int i = 0; i < numnof bytes; i++)

cerr << hex << (int) datastore(i] << dec << 111;
cerr << I\n";

I---
If Function: detectError
II Returns:
// Parameters:

0 II Summary:
//--
int FastrakClags::detectError()

char *station_data;
int success = TRUE;

II This method should only be used in critical sections. As a result,
II no semaphore protection is needed here.
for (int i = 0; i < FSTK._NUMSTATIONS; i++)

stationdata = datarec(i];

switch (*station-data) {
* case '0': break; // No error for data record - do nothing

case '2': cerr << 'Fastrak Type 2 Record received.\nl;
break;

case 'A': cerr << BELL
<< 'HARDWARE ERROR found in Fastrak station-
<< i+1

*<< I EPROM CHECK SUM. (character A), << endl; 0
break;

case 'C': cerr << BELL
<< "HARDWARE ERROR found in Fastrak station,
<< i+l
<< I RAM TEST. (character C), << endl;
break;

* case 'S': cerr << BELL
<< 'HARDWARE ERROR found in Fastrak station,
<< i+1
<< I SELF-CALIBRATION. (character S)" << endl;
break;

0 0
177

0 0

p * 0 0. .. i ,i , :i . .

case 'U': cerr << BELL
,<< HARDWARE ERROR found in Fastrak station,
<< i+l
<< I SOURCE/SENSOR ID PROM. (character U)]
<< endi;
break;

case 'a': cerr << BELL
<< 'SOFTWARE ERROR found in Fastrak station"

4< «1+1
<< I CALCULATE TRACE OF S4TS4. (character a)'
<< endl;
break;

case "b': cerr << BELL
<< 'SOFTWARE ERROR found in Fastrak Station'
<< i+1
<< I SELF-CAL DIVIDE. (character b)' << endl;
break;

case 'c': cerr << BELL
<< 'SOFTWARE ERROR found in Fastrak station,
<< i+1
<< " SELF-CAL A/D INPUT. (character c)l
<< endl; 0
break;

case 'd': cerr << BELL
<< SOFTWARE ERROR found in Fastrak station'
<< i+l
<< I SENSOR A/D INPUT. (character d)' << endl;
break;

case 'e': cerr << BELL
<< 'SOFTWARE ERROR found in Fastrak station'
<< i+
<< OUT OF ENVELOPE. (character e)' << endl;
break;

case 'f': cerr << BELL
<< 'SOFTWARE ERROR found in Fastrak station'
<< i+l
<< I SELF-CAL OFFSET OVERFLOW. (character f)'
<< endl;
break;

case 'g': cerr << BELL
<< 'SOFTWARE ERROR found in Fastrak station'

* << i+1
<< I TRMDI CALCULATION. (character g)' << endl;
break;

case 'h': cerr << BELL
<< "SOFTWARE ERROR found in Fastrak station'
<< I+K
<< " PATH1. (character h)' << endl;
break;

1° i

23 q

case 'i': cerr << BELL
<< SOFTWARE ERROR found in Fastrak station, j
«<< i+1 -
<< I PATH2. (character i)l << endl;
break;

case 'j': cerr << BELL
<< SOFTARE ERROR found in Fastrak station'
<< 1+1
<< I PATH3. (character j)' << endl;
break;

case 'k': cerr << BELL
<< SOFTWARE ERROR found in Fastrak station"<< i+I 1
<< I PATH4. (character k)l << endl;

break;
case 'Pi: cerr << BELL

<< 'SOFTWARE ERROR found in Fastrak station,
<< i+]
<< ' SYSTEM RUNNING TOO SLOW. (character 1)'
<< endl];
break;

case 'n': cerr << BELL 0
<< SOFTWARE ERROR found in Fastrak station, << i+1
<< I ATTITUDE MATRIX CALCULATION. (character n)"
<< endl ;
break;

case 'p': cerr << BELL
<< 'SOFTWARE ERROR found in Fastrak station,
<< i+l •
<< ' NORM OF XORVEC TOO LOW. (character p),
«< endl ;
break;

default cerr << BELL
<< 'UNKNOWN ERROR found in Fastrak station"
<< i+l << ": (character I << *station-data
<< ") ASCII code: "
<< int(*stationdata) << endl;
break;

} end switch
II end for

return(success); 0

If end detectError()

179

* .:' .. o " '. % ,' .

Ifto&MUM24

II Function: reportStataError
1/ Returns - ..

IIParameters:
II Suwoary: Report errors caused by trying to use inactive stations.
/ ---

void FastrakClass: :reportStateError(char* location,
FSTK..stations stationhnum)

cerr << BELL << 'Error in using station' << station_num+l << •\n.
<< " in *FastrakClass.cc*FastrakClass::"
<< location << 1; inactive station' << endl;

.---
I/ Function: checkReadError
II Returns: TRUE if no read-data error, else FALSE
// Parameters: station number
// Summary: Check for read-data error.

.---
int FastrakClass: :checkReadError (FSTK.stations stationhum,

char* source, FSTK_datatypes data._type)

int success = TRUE;

if (!activestate(stationnum])
reportStateError (source, station_num);
success = FALSE;

if (datatype-start[stationnum] [data_type] < 0)

cerr << BELL << "Error in reading FASTRAK station'
<< station_num+l << '.\nI
<< I in *FastrakCIass.cc*FastrakClass::I << source

<< 1; unrequested data type\n* << endl;
success = FALSE;

if (!is_.pollingflag) {
cerr << BELL << 'Error in reading FASTRAK station,

<< stationnum+l << ".\n'
<< I in *FastrakClass.cc*FastrakClass:: << source
<< 1; polling process suspended\nO << endl;

success = FALSE;

return (success);
) II FastrakClass: :checkReadError()

ISO

S1.
,-• . ,..~ ~ * .1,, ,,'. . • . , , . . ,. .

Frai ckec 25

1// Function: suspend

I/ Returns: TRUE if the suspension is successful. Otherwise, FALSE.
1/ Parameters:
. Summary: In multiprocess mode, suspend the execution of the
// :parallel polling process.
/---

int FastrakClass: :suspend()

int success = TRUE;

if (ispolling.flag)
if (parpoll_pid != NULL)

if (uspsema(paramsema) ==-1)
success - FALSE;
reportsyserr(Isuspending the polling process',

"FastrakClass: :suspend");

else
isDpollingflag = FALSE;

)0

#if DEBUG
cerr << 'Parallel polling process suspended: I << success << endl;

#endif

return(success);

* 0

//--
// Function: resume
/ / Returns:
// Parameters:
// Summary: Resume the execution of the parallel polling process.
/---

void FastrakClass: : resume ()

if (!is.polling_flag)
if (parpoll_.pid 1= NULL) usvsema (paramsema);

* i5._polling_flag = TRUE;
#if DEBUG

cerr << 'Parallel polling process resumed.\n';
*endif

* 0

* 0

0 9. ,.

/1 Function: setAlignmeflt
A/ Returns: TRUE if the operation is successful else, FALSE.

IIParameters: station number
II Summnary: met the aligrnment of a station.

1---
int FastrakClass: :setklignment(FSTK..stations station~num,

const float origin[3],
corist float x~point[3],0
const float y~point[3])

if (!active~state[station~nunf) I
reportStateError(IsetAligrnment', station~num);
return(FALSE);

iiConstruct the 'A, command to set the alignment of the station.
1/Refer to pp 42-49, the 3 SPACE USER's MANUAL for details.

static char conunandf 100];
sprintf (command,Ad,.f.f,.f,.f,.f,.f lf.f .fr'

station~num+l,
* ~~origin CFSTKjC, origin[FSTK_.Y], origin [FSTI(..Z],

x-oint[FSTKXl, x..point[FSTKYl, x..pointtFSTK...Z),
y~point [FSTKj], y~point (FSTKY], y~point [FSTK_.Z]);

mnt success =sendCommand(command, strlen(command),
'FastrakClass: :setAlignment')

if (success ==TRUE)
for (mnt i =0; i < 3; i++)

alignmentfstation..num] [0] [ii = origin~i];
alignment[station..num]El] [ii = x~point Li];
alignment[station-num [2] [ii = y..point[i];

#if DEBUG
cerr << FASTRAK alignment set.\nl;

#endif

* ~return (success);
I IFastrakClasg::setAlignment()

182

S.27

//I Function: resetAlignment
I " I Returns: TRUE if the operation is successful else, FALSE. I.
I/ Parameters: station number
-// SSumnary: Reset the alignment of a station.
/---
int FastrakClass: :resetAlignment(FSTK_stations station_num)

if (!active-statetstationnum])
reportStateError(resetAlignment', stationnum);
return (FALSE);

1/ Construct the IRI co•mand to reset the alignment of the station to
// default. Refer to pp 50, the 3 SPACE USER's MANUAL for details.

* char command[10l;
sprintf(comuand, *R%d\r., stationnum+l);

int success = sendComiand(command, strlen(comnand),
"FastrakClass: :resetAlignment);

if (success == TRUE) {
for (nt i = 0; i < 3; i++)

for (int j = 0; j < 3; j++)
alignment[stationnum] [i] [j] = 0.0;

aligrunent[station-num] [1] [0] = 1.0; // X direction
alignment[stationnum] [2) [1] = 1.0; // Y direction

#if DEBUG
cerr << "FASTRAK alignment reset.\n';

#endi f

return (success);
* 1 // FastrakClass::resetAlignment

* 1

* 0

* •

* 0

// Function: getAlignment I.
// Returns: origin, x-axis, and y-axis vectors
// Parameters: station number
// Summiary: Get the alignment of the station.
//---
void FastrakClass: :getAligment (FSTKstations stationnum,

float origin[3],
float xpoint[3], float ypoint[3])

for (int i = 0; i < 3; i++) {
origin[i] = alignment[station.num] [0] [i];
xpoint[i] = alignment[station_num] [1] [i];
y_point[i] = alignment[stationnum] [2] [i];

/j FastrakClass: :getAlignmento()

//--
// Function: setBoresight
// Returns: TRUE if the operation is successful else FALSE.
// Parameters: station number and orientation angles
// Summary: Set the boresight of a station.

.---
int FastrakClass: :setBoresight(FSTKstations stationnum,

const float orient[3])

if (!activestate[station_num])
reportStateError(IsetBoresight', stationnum); e
return (FALSE);

// Construct the IGI coimnand to establish the boresight reference
// angles. Refer to pp 51 - 54, the 3 SPACE USER's MANUAL for
/1 details.
char command[50];
sprintf (command, G%d,%.lf,% .lf,%.lf\r,

otationnum+l, orient [FSTKAZ], orient [FSTKEL], orient [FSTK_RO]);

int success = sendCommand(conmand, strlen(command),
"FastrakClass: :setBoresight');

if (success == TRUE)
boresight (stationnum] [FSTKAZ] = orient [FSTKAZ];
boresight[stationnum [FSTKEL] = orient[FSTKEL];
boresight(stationnum] [FSTKRO] = orient(FSTK_RO];

/1 Construct the 9BI command to set the line_of_sight of the station.
// Refer to pp 53, the 3 SPACE USER's MANUAL for details.
sprintf(command, 'B%d\r°, stationhum+.);

184

success sendCommand(ccmand, strlen(caouuand),
'FastrakClass: :set~oreeights);

cer << IFASTRAKla: :soresight st)n'

* 1/ ~~Returns:TU foprto ssuccessful

// Summary: Reset teboresight.

--
tFasctraonas: resetBoresight(SK.atnsttin.n)

ifPacraemetters: stationnubrL~u]

reportStateError(IresetBoresight', station~num);

//Construct the 'b' command to reset the boresight of the station to
//default.
IIRefer to pp 55, the 3 SPACE USER's MANUAL for details.

char command[IO);
sprintf(command, lb%d\rl, station...num+l);

int success=
sendCommand(colmmand, strlen(command), "FastrakClass::resetBoresight');

if (success == TRUE)
boresightistation~..num] FSTK_.AZ] = 0.0;
boresight~statiorL~num][FSTK..EL] = 0.0;
boresightjstation..num] (FSTK..R0] = 0.0;

#if DEBUG
cerr << "ASTRAX boresight reset.\n';

#endif

return(success);
1 /FastrakClass: :reset~oreflight()

P CIO&=30

// --- -- ------ ---- ------ -- -- -- -- ---- ---- ---- -- ------ ---- ---- ------ --- -

•// Function: getBoresight
" // Returns: euler angles defining the boresight
// Parameters: F.cation number
// Summary:

void FastrakClass::getBoresight(FSTK.stations stationnum, float orient[3])

* orient[FSTKAZ] = boresight[station-hum] [FSTKAZ];
orient [FSTKEL] = boresight [stationnhum] [FSTK EL];
orient[FSTKRO] = boresight[stationnum] (FSTKRO];

1 // FastrakClass::getBoresight()

/--- --------------------
//I Function: setHemisphere
// Returns: TRUE if the operation is successful. Otherwise, FALSE.
// Parameters: station number and new zenith vector
// Summary: Set the hemisphere of a station.
//--
int FastrakClass::setHemisphere(FSTKstations stationhnum,

const float zenith[3])

if (!activestate[station-num]) f
reportStateError("setHemispherel, station-num);
return(FALSE);

// Construct the "HI comnand to set the hemisphere of the station. 0
1/ Refer to pp 88 - 92, the 3 SPACE USER's MANUAL for details.
char coymandIS01;
sprintf(command, 'H%d,%.ff,%.lf,%.lf\r',

stationnum+1, zenith[FSTK_], zenith[FSTKY], zenith(FSTK_Z]);

int success =
sendCommand(comnand, strlen(command), 'FastrakClass::setHemisphere');

if (success == TRUE)
hemispherelstationnum][FSTK_X] = zenith[FSTK_X];
h-misphere [station_num] [FSTKY] = zenith[FSTK.Y] ;
hemisphere[stationnum] [FSTKZ] = zenith[FSTKZ] ;

#if DEBUG
cerr << IFASTRAK hemisphere set:,

<< zenith[FSTK..X << ", I << zenith[FSTK_Y] << ,

<< zenith[FSTK_Z) << '.\n';
tendif

return (success);
} FastrakClass::setHemisphere()

186

31w
// .

// Function: resetHemisphereS// Returns: FALSE if station inactive or reset fails, TRUE otherwise

Parameters: station number
Summary: Reset the hemisphere.

int FastrakClass::resetHemisphere(FSTK_stations station._num)

if (!active_state[station_num])
reportSrateError(hresetHemispherei, station_hum);

return(FALSE);

Refer to pp 88 - 92, 3 SPACE USER's MANUAL for the default.
* float default-zenith[3];

default_zenith[FSTKX] = 1.0;
default_zenith[FSTKY] = 0.0;
default_zenith[FSTK_Z] = 0.0;

#if DEBUG
cerr << IFASTRAK hemisphere reset.\n';

#endif

return (setHemisphere(station.num, default-zenith));
) // FastrakClass::resetHemisphere()

I---
// Function: getHemisphere
// Returns:
// Parameters: station number and zenith vector
II Summary: Get the hemisphere of the station.

--
* void FastrakClass::getHemisphere(FSTK_stations station-num, float zenith[3])

zenith[FSTKX] = hemisphere(station. num][FSTKX);
zenith(FSTKY] = hemisphere(stationnum][FSTKY];
zenith[FSTKZI = hemisphere[stationnum](FSTK_Z);

I // FastrakClass::getHemiaphere()

187

*

32

// Function: setUnits
S// Returns: TRUE if the operation is successful. Otherwais FALSE.
II Parameters:
// Summary: Set the position measuring unit for the FASTRAK.
//--
int FastrakClass::setUnits(FSTKunits pos_units)

// Construct the IU/u" command to set the unit for the FASTTRAC data.
// Refer to pp 122 - 124, the 3 SPACE USER's MANUAL for details.
char command[21;
if (posunits == FSTKCENTIMETER)

strcpy(command, 1u\0);
else if (posunits == FSTK.INCH)

strcpy(command, OU\0O);
else (

cerr << OError: invalid units specification I << posunits «< endl;
return (FALSE);

int success = sendCommand(command, 1, 'FastrakClass::setUnits');
if (success) units = posunits; S

*if DEBUG
cerr << "FASTRAK position units set.\n';

#endif

return(success);
•) // end FastrakClass::setUnits

//--
// Function: setDataTypes
I/ Summary: Specify the requested data types for the station. Before
// : data can be read from the FASTRAK, the types of the data 5

• // : needed must be specified. By default, position
//1 : coordinates and Euler orientations are returned from each
// : station.
// Parameters: station number, datatype mask
1/ Returns: TRUE if the operation is successful. Otherwise, FALSE.
//---

Smint FastrakClass::setDataTypes(FSTKstations stationnum, short mask)

if (!activestate(station.num])
reportStateError("setDataTypes', stationnum);

return(FALSE);

int success = TRUE;

// The following piece of code is a critical section in multiprocess
// mode. When data record parameters are being updated, data records

188

6 -..... 0., . . . " _•. . e ••. _

ii 0S., il1 i

bakCbh8.cc 334

IIcannot be allowed to be read by getPacket() which runs in
//parallel with this method.

if ((parpoll-pid !=-1) && (!paramn -setjflag))
// entering the critical section
if (uspsema(paramsema) == -1)(

success = FALSE;
report..syserr (Igetting semaphore*,

'FastrakClass: :setDataTypes");

iiAdjust the data record parameters.
int i, j;
fstk...packet-size -~ datarec..sizelstation~nuzn];

datarez.size[station..numri = FSTK_HEADER.SIZE;

for (i = 0; i < FSTK_NUM_DATATYPES; i++)
datatype..start(station~mum] [ii = -1;

IIConstruct the 10 command to specify the type of data
IIwe want from the FASTRAI(station.
IIRefer to pp 97 - 111, the 3 SPACE USER's MANUAL for details.

char command[201;
sprintficormmand, 10%d', station-nurn+l);

if (mask & FSTK_COORD MASK){* 4
strcat(command, ',21);
datatype..start~station_nun] [FSTK..COORD)TYPEI

datarec-size [stationmujn];
datarec..size~station_nun] += FSTXCOORDSIZE;

if (mask & FSTK_EULERMASK)
strcat(command, 1,41);
datatypestart(stationý_nun] [FSTK...EULER-.TYPE]

datarec_size(station~numn];
datarec~size~station_mum] += FSTK_..EULER_.SIZE;

if (mask & FSTK_XCQSJ14ASK)
strcat(command, ",51);
datatype..start [stat ion~numn][FSTKXCOSTYPEI

datarec-size[statiom~numn];
datarec..sizefstation_nun] += FSTKXCOSSIZE;

189

wow

344

if (mask &FS'1K..YCOSJ14ASK)(4
strcat(commtand, ',6);

* datatype..start(station~num] [FSTKYCOS..TYPE]
datarec...size [station..num];

datarec...size~station~numJ += FSTK...YCOS...SIZE;4

if (mask & FSTKZCOSJ(ASK)(
* ~strcat(cowvand, 1,71);0

datatype...start !station~num] [FSTK...ZCos_..TYPE]
datarec...size~station mum];

datarec-size [stationjium] += FSTK.ZCOS...SIZE;

if (mask & FSTK...QUATJ4ASK)(
strcat(command, 1,11);
d~.tatype..start (station~numJ [FSTKQUATTYPE]

datarec...size~station...num];
datarec~size [station~num] += FSTKQUATSIZE;

if (mask & FSTK..16BITCOORDJ4dASK)(
strcat(comrnand, 1,181);
datatype~start [stat ion~nuin] FSTI(.16BIT...COORDTYPE]

datarec_size~station...jum];
datarec~size [station~num] += FSTI(J6BITCOORDSIZE;

4 ~if (mask & FSTK-16BITEULERjMASK) ('
strcat(cornrand, 1,191);
datatype-..start.istation_.num) FSTK1IBITr.EULERTYPE)=

datarec~size~station mum];
datarec-size[station..numl += FSTK_16BIT._EULER.SIZE;

* if (mask & FSTK_16B1TQUATJ4MASK)
strcat (command, 1,20");
datatype...start [stat ion~num] (FSTK_16BiT-QUATTYPEI

datarec..sizelstation~num];
datarec..size (station~num] += FS'K_16BITQUAT SIZE;

if (mask & FSTKCRLF-)4ASK)
strcat(conunand, ',1);
datarec~size (station~num] += STK...CRIPSIZE;

strcat (command, '\rl);

190

//recompute the maximum station data record size
max~datarec...size = 0;
for (i=O; i<FSTKNUKSTATIONS; i++)

if (datarec-sizelstation~num] > max..datarec~size)
max..datarec~size = datarec...size[stationjium];4

#if DEBUG
*cerr << setDataTypes:\n"

<< The conmmand: I«< coxmmand << \nI
<< Expecting station- << station..num+l
<< to contain I << datarec_size Lstation~num]
<< bytes., << endl;

#endif

* IINote that sendCommand() is not be used here because
/1adjusting data record parains and sending the command must be in
//the same critical section.

if (write(port~fd, command, strlen(command)) == -1)
success = FALSE;
report~syserr(Isending FASTRAX 0 command',

'FastrakCIass: :setDataTypes');

datatype~jrask(station-jiuxn = mask;
fstk..packet-size += datarec~size fstation~num];

for (i = station...nuxn+l; i < FSTKNUM..STATIONS; i++)
* ~if (active..state[i])

for (j = 0; j < FSTKNUM...DATATYPES; j++)
datatype-start fii Li] += datarec_size~stationjium];

data_readyjflag = FALSE; IISee getPacket() for when it is set to TRUE.
* ~if ((parpoll-.pid != -1) &&(paranL~set...flag == FALSE))

usvsema(paralnsema); /1exiting the critical section

#if DEBUG
cerr << FASTRAK data type specified.\no;
cerr << 'Packet size set to I << fstk..,packet-.size <<- bytes.\nN;

* *#endit

return (success);
1 1end FastrakClass::setDataTypes

191

0 0

// Function: sE:State
// Summary: Se,- the sate of the station: TRUE (active) or FALSE
// : (inactive). Note that this routine may seem to be more
// :complex than necessary. The complexity is due to the need
// : to handle the different requirements at and after the
// : initialization stage. This routine can be simplified by
// : spliting it into two separate ones. However, then the
// : program becomes longer.
// Parameters: station number, state
// Returns: TRUE if the operation is successful. Otherwise, FALSE.
/. ..--
int FastrakClass::setState(FSTKstations stationnum, int active_flag)

if (!active_setting(stationnum]) {
reportStateError(IsetStatel, stationnum);
return (FALSE);

int success = TRUE;

// When fstkpacket.size = 0, the program is in the initialization stage,
// where setState() is called from checkState(. Otherwise,
// fstkpacketsize > 0. The initialization has finished and setState()
/1 is called by the FASTRAK user.
if ((fstk._packet-size == 0) II

(activestate(stationnum] != activeflag)) {
int i, j, activestation = -1, numactives = 0;

for (i = 0; i < FSTKNUMSTATIONS; i++)
if (activestateli])

numactives++;
activestation = i;

// Error! trying to deactivate the last remaining station.
II At any time, at least one station must be active:
if ((num.actives <= 1) &&

(active~station == station.num) && !(active.flag))
cerr << BELL << 'Error in setting FASTRAK station,

<< stationnum+l << I state.\n e
<< in *FastrakClass.cc*FastrakClass::setStateI
<< At least, one station must be active at any time.,
<< endl;

return (FALSE);

// Construct the Il command to set the state of the station. 41

I/ Refer to pp 128 - 131, the 3 SPACE USER's MANUAL for details.
char command[10];
int statecmd - 0;
if (activeflag) statecmd = 1;

192

44

* *if sprintf (cammand, oltd,%d\r', station-jxum+2, state-cmd); -
cerr << setState:\nl

<< The coamand: I < coammand << endl; 4
*endi f

IIThis is a critical section.

4 if (parpoll...pid != -1)
if (uspsema(paramsema) -= -1) { /entering the critical section

success = FALSE;
report-syserr (getting semaphore', 'FastrakClass::setStatel);

* II Note that sendCoxsnando) is not be used here because
1/sending the command and updating data record params must be in
IIthe same critical section.

if (write(port..jd, command, strlen(command)) != -1)
active~state [station...num] = active~j lag;

IIUpdate data record parameters when the change is from ACTIVE
IIto INACTIVE. On the other hand, when the change is from
/1INACTIVE to ACTIVE, setDataTypes () is called to update
IIrecord parameters.

if (lactive..flag && (fstk...packet~size > 0))
fstk..packet...size -= datarec~sizefstation~num];

* for (i = station...num+l; i < FSTKNUMSTATIONS; i++){
if (activeustate[i])

for (j = 0; j < FSTK.J4UM...DATATYPES; j++)
datatypestart Ci] Ci -= datarec..sizelstation-numj;

4 datarec~sizetstation...num) = 0;
for Ci = 0; i < FSTKJ4UK-DATATYPES; i++)

datatype~..start(station-jiui] Ci] = -1;

else if (active~flag)C
* ~param-.set~flag a TRUE;

setDeta~ypes(station~nwi, FSTKDEFAULT_.EASK);
param....etjflag - FALSE;

else
success a FALSE;

* report uyserr(-bending FASTRAX 1 command-,
1FastrakClass :setStat*");

) Iend if (write())

data ready-flag *FALSE; I See getPacket() for when it is set to TRUE.

193

II exiting the critical section
if (parpollpid := -1) usvsama(paramsema);

#if DEBUG -
cerr << 'FASTRAK station, << station_num <<« state set., << endl;

#endi f

return(success);
// end FastrakClass::setState()

/---
// Function: copyBuffer()

// Summary :

// Parameters:
/ / Returns:
I---

void PastrakClass• :copyBuffer()

//Use uspsema(paramsema) instead of ussetlock(datalock) if the
1/ object of this class is to be used in multiple processes.
while (!dataready_flag)
if (ussetlock(datalock) == -1) // locking for update

report-syserr('getting lock', 'FastrakClass: :readDatal);

for (int stationnum=O; stationnum<FSTK-NUM-STATIONS; stationhum++)
memcpy(datarec[station-num], datarecbuf[stationnum],

datarec-size[station.num]);

// Use usvsema(paramsema) if the object is to be used in multiple
// processes.
usunsetlock(datalock); // unlocking

/---
/I Function: readData

// Summary: Decompose the data packet in the current data buffer. For
// : a succesful read, datadest[] contains the required type
// : of data from the specified station. Note that (1)
II • datadestil must be a 4-element array for quaternions;
// : for the other types, it is a 3-element array; (2) old
I/ : data can be reused if invalid data packets were read by
// : getPacketo.
// Parameters: station number, required data types
II Returns- TRUE if the read is succesful. Otherwise, return FALSE.

int FastrakClass::readData(FSTIK.stations stationnum, I.
FSTKdatatypes data-type,
float datadest[])

194

4!!

*I

* , : , • , . .: ' :: i .. : , ' • , , , I . . .

if tcheckReadError(station.~num, IreadDatal, data...type) ==FALSE)

return(FALSE);

IIUse uupsema(paramsema) instead of ussetlock(datalock) if the
IIobject of this class is to be used in multiple processes.

while (!data~readyj lag)
if (ussetlock(datalock) .. -1) IIlocking for update0

report~syserr (Igetting lock', FPastrakClass::readData');

#if DEBUG
cerr <<I* readData:\nl

<< station' << station~luni+l << I\n'
<< record start I << datarec(station~num]

* « << record size <<a datarec...size[station-num]
<<' total size <<a fstk-packet...size
<<a data type start = "
<< datatype~start(station numn[data..type] << endi;

debugData(datarecistation~num), datarec..size (station...num]);
#endif

// the starting position of the type of data wanted in the buffer
char* start..pos = datarectstation~numn] +

datatype-start (station~num] [data..type];

switch (data-type)
* case FSTKCOORD..TYPE:

case FS'KEULER..TYPE:
case FSTI(.XCOS-TYPE:
case FSTKYCOSTYPE:
case FSTKZCOS..TYPE:

convertData(start-pos, 3, data..dest);
break;

case FSTKQUAT-TYPE:
convertData(start..pos, 4, data~dest);
break;

case FSl_6BITCOORDTYPE: -

if (units .- FSTK..CENTIMETER)0
convert l6BITData (start...pos, 3,

FSTl-6DIT-TO-C, data-dest);
else

convert l6BITData (startpos, 3,
FSTl_6BITTOINCHES, data...est);

~break;

case FSTI_16B1T...EUERTYPE:
convertl6BITilata (start..pos, 3,

FSTK-16BIT..TVOEGREES, data~dest);
break;

case FSTK_16BITQUATTYPE:

convertl6BITData(start..pos, 3,
FSTK_16BITTOQUAT, data-dest);

break;

// Use usvsema(paramsema) if the object is to be used in multiple//processes.

usunsetlock(Tdatalock); // unlocking

return (TRUE);
I end readData()

// Function: getHmatrix
Summary: Read a homogeneous transformation matrix. On a successful

I/ :return, the upper left 3x3 submatrix of matrix[] [
S// : contains a tranformation matrix constructed from the
// : X-cosin, Y-cosin and Z-cosin vectors of the station with
e// : X-consin in the first row, Y-cosin in the second, and
// : Z-cosin in the third; if FSTKCOORD..TYPE has been chosen
// : in setDataTypes, the fourth COLUMN will contain the
/1 : position of the sensor wrt the transmitter, otherwise,
// : it is filled with 0. The fourth ROW is filled with O's
// except that matrix[3]3] -= 1.
// Parameters: station number

* // Returns: TRUE if the read is succesful. Otherwise, return FALSE.
I---

int FastrakClass-.-getIQ4atrix(PSTK_station5 station-num,
float matrix[4][4])

I/ the starting pos. of the types of data wanted in the data record
char* startpos;

matrix[3] (0] = matrix[3] [1] = matrix[3] [2] = 0;
matrix[3] [3] = 1;

/"
// Use uspsema(paramsema) instead of ussetlock(datalock) if the
/1 object of this class is to be used in multiple processes.

* while (Idata-ready.flag)
if (ussetlock(datalock) == -1) // locking for update

reportsyserr ('getting lock,, 'FastrakClass: :getHthatrix);

// get the position vector if FSTKCOORDTYPE has been specified
if (datatypejmask [stationhnum] &FSTKIt6BITCOORD._MASK)

* float pos(3];
startpos = datarec[stationnum] +

datatypestart [stationtum] [FSTK_16BITCOORD_TYPE];

1960T

__ *.-"

F,.9

41

it (units usFSTI.CDITINETKR)
convertl6fllTData (start~pos, 3, PSTKl16BIT..T0.04, Poo);

convertl6BlTData(start~pos, 3, FSTI(.16BITTQ.INCHES, p08);

for (mt 1=0; i<3; i++) rmatrix[1H3]1 = posh]);

else if (datatype_.auk(stationjium]&aFSTK-.COORD.J(ASK)
float pos[3];
start..pos - datarec(station..num] +

datatypeustart Cutatiorijin] [FS 'K..COORD-.TYPE];
convertData(start-.pos, 3, pos);
for (int isO; i<3; i+.) matrixti] (3] . pos[i];

else{
* ~matrix(01 (3] = matrix[11[31 = matrix(2] [3] M 0;

Iiget the rotation matrix one of three ways
if (datatypejuasklstation..nulf] & FSTK...QUAT__ASKIFSTK_.16BITýQUATJ4ASK))

float quat[4];

* ~~if (datatype_.jask(stationjium]&FSTK...6BIT-.QUAT.J4SK){
start...pos = datarechstatior~num] +

datatype..start [station~.num] (FSTK_16BIT...QUAT_.TYPE];
convertl6fllTData (start..pos, 4, FSTK16BITTOQUAT, quat);

else
* s~tart~pos a datarec[station~..num] +

datatype~start (statior~num] (FSTK_.QUAT..TYPE];
colwertDaiatstart.~.pos, 4, quat);

// usunsetlock(datalock); IIunlocking

/1compute the rotation matrix from the quaternion info
*float xx = quatj~l~quat[1];

float yy = quat[2]*quat[2];
float zz a quat(31*quat(3];
float xy x quat~ll~quat [2];
float yz a quat[2]'quat[3];
float xz = quattl]*quat[3];-

*float ex * quattoJ*quatll];
float sy - quat[0]~quat[21;
float 9z * quat[0]*quat(31;

matrixhoOIl) 1.0 - 2.0*(yy + zz);
matrixCO] Cl] a 2.0*(xy - s2);
matrixiOl 121 a 2.0*(xz + sy);

matrix[l] [01 a 2.0*(xy + 52);
aatrix(l] (11 a 1.0 - 2.0*(xx +zz);
matrix~l1 (21 w2.0*(yz s x),

197

42 1
matrix[21 [03 a 2.0'Cxz - y);
matrix[21 [1] a 2.0*(yz + sx);
matrix[21H2J 1.0 - 2.0*(xx + yy);

else if (datatypejmask~stationjium]&
(FSTK_.EULEPRJIASK IFST¶(16BIT-.EULERMASK))

float arigles[3];

if (datatypejnask [utationjlum] &FSTK_16BITEULER.J(AK)
start-.pos = datarec~station~.num] +

datatype...start[station...numJ [FSTK....6BITEULERTYPE];
convertl6BITData kstart~pos, 3, FSTK_16BIT..TODEGREES, angles);

else (
start..pos = datarec[station..num] +

datatype...start~station..numn][FSTKEUTLERTYPE];
convertData(start...pos, 3, angles);

Ii usunsetlock(datalock); //unlocking

IIcompute rotation matrix from the euler angle info
angl*s(FSTKAZ] D=TOR;
angles[FSTK-ELI DTOR;
angles[FSTKRo) DT OR;

float ca = cos(angles(FSTK_.AZI);
float sa = sin(angles(FSTI(.AZD);
float ce = cos(angles[FSTK..ELJ);
float se . sin(angles[FSTK..EL]);
float cr = cos(angles[FSTK..R0]);
float sr = sin(anglesEFSTK.._RO]);

float sesr = se*sr;
float secr = se*cr;

matrix[0] t0] = ca*ce;
matrix[0] [1] = ca'sesr - sa*cr;
matrixtO] [2] = ca*setcr + sa*sr;

matrix[1] [0] = sa*ce;
matrix~l] [1] . sa*sesr + ca~cr;
matrix] 1][2] = sa'secr -ca

tsr;

inatrix[2] [0] = -se;
matrix[2] El) 2 ce'sr;

inatrlx(2] [2] = ce*cr;

196

A* ALL.

S43b else if ((datatype_mask[stationnum)&FSTK_XCOS_.ASK) &&
(datatyzpe_mask [station_num] &FSTK_YCOS_M4ASK) &

* (datatypemask(stationnum]&FSTKZCOSJASK))
for (nt row = 0; row <3; row++)

start.-pos = datarec[stationnuml +
datatypestart [stationrnum] (row + FSTK_XCOSTYPE];

convertData(startpos, 3, matrix [row));

//II usunsetlock(datalock); // unlocking
)
else

cerr << 'Error: no orientation information to build H-matrix\n=;
/ / usunsetlock(datalock); II unlocking

return (FALSE);
0 }

return (TRUE);
// end getHmatrix()

.---
// Function: getPosOrient
/I Summary: Read the current position and orientation of the station
// : together. On a successful return, posit[] contains the
/1 : position and orient[] contains the orientation. The type
// : of the orientation, euler-angle and quaternion, is
// : determined by orient-type. Note that if orient_type is
// : FSTKEULERTYPE, orient is a 3-element array. Otherwise, it
* /I : must be a 4-element array.
1/ Parameters: station number, type of orientation
II Returns: TRUE if the read is succesful. Otherwise, return FALSE.
//--
int FastrakClass: :getPosOrient(FSTKstations station_num,

FSTKdatatypes orient_type,
float pos[3], float orient[])

char* start..pos;

if (checkReadError(stationnum, 'getPosOrient',
orienttype) := FALSE)

return (FALSE);

* 1/0

// Use uspsema(paramsema) instead of ussetlock(datalock) if the
// object of this class is to be used in multiple processes.
while (!data.ready.flag) ;
if (ussetlock(datalock) == -1) // locking for update

reportsyserr('getting lock', IFastrakClass: :getPosOrient));

// get the position vector
if (datatype..mask(station_num]&FSTK.16BIT_COORDMASK)

start-pos = datareclstationnum] +
datatype_start stationh.um] [FSTK_.6BIT_COORD_TYPE];

199

!'.

0 0

P a~ k c ~ e e44
if (units m= r-CNINTR

convertl6BlTData (start~pos, 3, FSTK_1.6BITTO CM, pos);
* else

convertl6BITData (start..pos, 3, FSTK..1691T-T0 INCHES, pos);

else if (datatype-jaskistation-num]&FSTK-COORD-A~SK)
start~pos a datarec(stationjium] +

datatype...start Estation...ium) EPSTK_.COOPDTYPE);
* convertData(start-pos, 3, pos);

else(
Cerr << 'Error: no position type selected in

<< FastrackClass: :getPosorient~nl;
return(FAL.SE);

I/ get orientation vector
start...pos -datarec~station~num] +

datatype-start (station-numJ [orient..type];

switch (orient-..type)
case PSTKEULERTYPE:0

convertData(start~pos, 3, orient);
break;

case FSTKQUATTYPE:
convertData(start~pos, 4, orient);
break;

case FSTK_16BITEULERTYPE:
convertl6BITData Cstart..pos, 3,

FSTK....6BIT'ITOEGREES, orient);
break;

case FSTK_16BITQUATTYPE:
convertl6BITData(start~pos, 3,

FSTKJ16BITýTO-QTAT, orient);
break;

default-
cerr << 'Error: invalid orientation type specified in

<< FastrackClass: :getPosOrient~nl;
* return(FALSE);

/*
usunsetlock(datalock); IIunlocking

return (TRUE)
IIend getPosOrientr)

20

APPENDIX C: FASTRAK CONFIGURATION FILE

• 3vink.dbt 1 0

FILENAME: fastrak.dat
PURPOSE: configuration file for Body class using
: four fastrak sensoro
AUTHOR: P F Skopowski

* # DATE: 1 Jul 96
COMMENTS:
The file format:
a). A line starting with a '#' is a comment line.
b). Each line must not contain more than 255 characters.
c). Maintain the order of the parameters (i.e., the station
parameters, hemisphere and alignment, must be the last
part of the file).

===m========== Parameters for the FastrakClass
the serial port name for the FASTRAK

* PORT: /dev/ttyd2

Which station do you want to work with?
A station can set to be active or inactive by the software. Only
active stations return data. Only the station with its hardware
switch set on can be set to be active by the software.
Set the corresponding bit to 1 if you want the station to be active.
Note that at any time, at least one station must be active.
WANTED_STATIONS: I I 1 1

the parameters for the hemisphere and alignment of each station

These following parameters must be the last part of the file.
* The parameters for a station do not have to be specified here.

If they are not specified, the default values of the FASTRAK are used.
The STATION*_PARAM line and the four parameter lines following it must
immediately follow one another. There can be no comment lines among them.

the hemisphere and alignment of station 1
STATIONIPARAM:

Shemisphere: 0 0 -1
origin: 0 0 0
xpoint: 0 -1 0
y_.point: -1 0 0

* the hemisphere and alignment of station 2
* STATION2_PARAM: •

hemisphere: 0 0 -1
origin: 0 0 0
xpoint: 0 -1 0
y_point: -1 0 0

201

4 •

• 2

the hemisphere and alignment of station 3
W STATION3_PARAM:

hemisphere: 0 0 -1
origin: 0 0 0
x.._point: 0 -1 0
y-poi nt: -1 0 0

the hemisphere and alignment of station 4
* STATION4_PARAM:

hemisphere: 0 0 -1
origin: 0 0 0
x_point: 0 -1 0
ypoint: -1 0 0

20

* O

* :0

* 0

202d

S t O

APPENDIX D: POSITION TRACKING SOFIWARE

body.h 1

//FILENAME: body.h
//PURPOSE: declarations for the Body class

II uses position tracking technique
IIAUTHOR: P F Skopowski
IIDATE: 1 Aug 96
IICOMMENTS: definition of the Body class

#ifndef BODY_H
#define BODY_H

#define PFý_CPLUSPLUSAPI 0
#include <Performer/pf .h>
#include 'upperbody.h,
#include "lowerbody.hl
#include 'FastrakClass.h,

class Body

private:
Upperbody upperbody;
Lowerbody lowerbody;* 4
mnt valid;

FastrakClass *fastrak -unit;

FSTK_stations torso_sensor;
FSTK_stations upperarm-sensor;0
FSTK_stations lowerarrnsensor;
FSTK_stations hand_sensor;

IIFastrak related coordinate systems
pfMatrix H_txc_to~ts, H~tx~touas, H_tx-to-las, K~tX~to~hs;

IICalibration matrices
pfMatrix H_ts_to...link3, H_ts_to_link6, H_:uas_to_link20;
pfMatrix H_las_to_link2l, H..hs~to...link24;
pfMatrix H_ts_to~positl6, H~uas~to..positl8;

// Graphical nodel related coordinate systems
pfMatrix H3, H6, H20, H21, H24;0
pfMatrix H-.positl6, H~positl8;

203

// Body part lengths V
float spine~..shoulderjlength, uarm~length, larn~length, hand-.length;

void output~Okatrix(pf~atrix lU~lat);4

public:

Body(const char *cfg..fllename);

-Body();

void rotate (double)

void rotatejincrem~ent (double*)

* void drawo;

void reset();

int exists() return valid;

void get-.alljinputs();0

mnt calibrated;

int set..joint..angles 0;

int calculate~joint~angles(double)

mnt set_link_length(int, float);

int set..joint~displacement(int, float);

40
#endif

204

1 4•
SFILENAME: body.cc

* ll PURPOSE: functions for the Body class
I/ : position tracking technique
II AUTHOR: P F Skopowski -,
// DATE: 1 Aug 96
I/ COMMENTS: functions for the Body class

#include <math.h>
#include <iostream.h>
#include "body.h"

/1---
/1 Function: Body(const char *configfilename)
// Purpose: constructor of the body type
// : creates and initializes FastrakClass object
// : uses fastrak.dat configuration file
// Returns: body class object

.--
Body: :Body(const char *configfilename)

valid - FALSE;

fastrak-unit = NULL;

// open configuration file
ifstream configfileobj (config-filename);
if (!configafileobj) •

cerr << OError: opening configuration file: -

<< configfilename << endl;
return;

* 1/ initialize matrices
pfMakeldentMat (Htxtots);
pfMakeIdentMat(H_txto_uas);
pfMakeIdentMat (H_tx.to_las);
pfMakeldentMat (H_txtohs);
pfMakeldentMat(H_ts_to_link3);

* pfMakeIdentMat (H-ts-to-link6); S
pfMakeldentMat(H_uas_to_link20);
pfMakeldentMat (H_las_to_link2l);
pfMakeldentMat (H-lis-to-link24);
pfMakeldentMat (Hts_topositl6);
pfMakeIdentMat (Huastoposi ti8);
pfMakeldentMat (H3);

* pfMakeldentMat(H6);
pfMakeldentMat (H20);
pfMakeldentMat (H21);
pfMakeldentMat (H24);

0 0

- 0

I/initialize Fastrak
fastrakunit = new FastrakClass(config-fileobj);

if (fastrakunit->exists())
if (fastrakunit->getState(FSTK_STATIONl))

torsofsensor = FSTKate(STATION1;. O
if (fastrak~unit->getState(FSTKSTATION2))

upperarmsensor = FSTKSTATION2; t
if (fastrak_unit->getState(FSTKSTATION3))

lowerarm_sensor = FSTKSTATION3;
if (fastrak_unit->getState(FSTKSTATION4))

handsensor FSTKSTATION4;

valid = TRUE;

II---
// Function: -Body()
// Purpose: destructor of the body type •
//---
Body: :.-Body()

if ((fastrak_unit != NULL) && (fastrakunit->exists())
delete fastrak_unit;
fastrak-unit = NULL;

/--
// Function: rotate (double *angles)
/P Purpose: set upperbody joint angles
//I :uses the passed in array of values
II---

void Body::rotate (double *angles)

upperbody.rotate(angles);

// Function: rotateincrement (double *increment angles)
// Purpose: increment upperbody joint angles
// : uses the passed in array of values
/.--

* void Body::rotate_increment (double *incrementangles)

upperbody.rotate_increment(incrementangles);

2D
206

S... 0i "

I---.
II Function: draw()
I/ Purpose: draw the body in the proper position
,--

void Body::draw()

glPushMatrix(;
upperbody.draw(); ,..
glPopMatrix(;
lowerbody.draw(I;

I--
II Function: reset()
// Purpose: reset upperbody joint angles
//---

void Body::reset()

upperbody.reset (};
I

//---

// Function: setlink_length(int link, float length)
// Purpose: set a specified link's length
I/ : used to size the link to the user
// Returns: TRUE if successful .

* /--
int Body: :setlinklength(int link, float length)

if (upperbody.set_link-length(link, length))(
return TRUE;

return FALSE;

//---
// Function: set-joint-displacement(int link, float length)
1/ Purpose: set a specified link's joint displacement
* // : used to size the link to the user •
// Returns: TRUE if successful
//- ------ -- -- ----- - -- --- ------- -------- ---- --
int Body::set.jointdisplacement(int link, float length)

if (upperbody.setjointdisplacement (link, length))(
return TRUE;

return FALSE;

*)

207

* 4

* 0

-e ~44
IIFunction: get.allinputs
// Purpose: get inputs from the fastrak trackers
/I : called to copy latest sample from second buffer
11 : implemented for double buffering to reduce
II : lock overhead
1/ : called once at the beginning of each frame

1/ Comment: original interface design by Scott McMillan

/--
void Body: :getallinputs()

if (fastrak..unit->exists()
fastrak_unit->copyBuffer);

fastrakunit->getHMatrix(torsosensor, H_.tx-to-ts);
fastrak._unit->getHMatrix(upperarmsensor, H_tx_touas);
fastrakunit->getHMatrix(lowerarm-sensor, H.txtqo__las);
fastrakunit->getHMatrix(handsensor, HMttxto.hs);

I---
// Function: output
// Purpose: output homogeneous transformation matrix (4x4)

void Body: :outputHMatrix(pfMatrix Hmat)

for (int i=O; i<4; i++)
printf(" %6.3f %6.3f %6.3f %6.3f\n',

Hmat[i] [01, Hmat[i] [11, Hmat[i] [2], Hmat[i] [3]);
printf('\nl);

* /--
II Function: set-jointangles()
II Purpose: Set the body's joint angles using fastrak data
/1 Returns: TRUE if successful
//---
int Body: :set.jointangles()

int valid a FALSE;

double angles[25];

* 0,2,

2

for (nt i 0 0; i < 25; 1.4){
anglesli] = 0.0;

valid a calculatejoint_angles(angles);

if (valid) (
rotate(angles);

return valid;

S//.--
// Function: calculatejointangles(double *)
// Purpose: calculate inverse kinematics
// : return the joint angles
// : getallinputs must run first to update data
// Returns: TRUE if successful
//---

Smint Body::calculate-jointangles(double *angles)

int valid = FALSE;
double thetal = 0.0;
double theta2 = 0.0;
double theta3 = 0.0;

Sdouble thetalS = 0.0; 0
double thetal9 a 0.0;
double theta20 a 0.0;
double theta2l a 0.0;
double theta22 = 0.0;
double theta23 - 0.0;
double theta24 a 0.0;6

const double degtorad a .017453292519943295;

if (fastrakunit->exists())
// must call getallinputs() first-

* valid = TRUE; 0

I/ convert reported data using calibration matrices
pfMultKMat(H3, H_txtots, H-ts.to-link3);//using calib matrix

//pfMatrix Htsdesired = (0.0, 0.0, -1.0, 0.0),
0 II (0.0, -1.0, 0.0, 0.0), 0
•II (-1.0, 0.0, 0.0, 0.0),
// (0.0, 0.0, 0.0, 1.0));/Inot using data
//pfCopyKat (H3, H..ts_desired);//not using calib

pfNultMat(H20, H.tx.to.uas, H-uasto-lnk2O); //using calib matrix

2M9

.•A L A:: .. : ,.,•:,__ . , . 0 _•

beyen 14
//*o***********investigate offset tracking--***w***

* pfi~atrix H3-iriv;

pfMultMat(H6, H-tXto-ts, H~ts...to..lirk6);//using calib matrix

* pfMultMat (IjpositlS, H~tx-to.uas, H~uas~topositIO);

pfl~atrix tempi, temp2;

pfl~akeldentMat (tempi);
pfMakeldentMat (temp2);
tempiCO] [3] = H-.positlS[0] [3] - R-.positl6[0] [3];
templ~lfl3] = H...positlS[1] [3] - H..posit16[l] (3];

* ~~templ(2] (3] = H..positlSC2] (3] - H...posit16[2]f3];

IInow convert the vector to a torso coord system
pfMatrix R6, R6_.inv;
pfMakeldentMat (R6);
pfCopyMat(R6, H6);
pfSetMatCol(R6, 3, 0.0, 0.0, 0.0, 1.0);
pfTransposeMat(R6...inv, R6);
pfMult~at(temp2, R6_inv, tempi);

float thetal6 - atan2 (temp2 [2] [3], temp2 [0](3]);
if (thetal6 < 0.0)(

* theta16 += 6.283185307;

float length =sqrt(tenlp2[0] [3] * temp2[0] [3] +
temTp2[2][3] * temp212][3fl;

float thetal7 =atan2(-temp211] [3], length);

pfMultMat(H21, H..tx..to...las, H_..as_to_link2l);

// get the data from H3
* double a3 = H3(21[01;0

double b3 a H3[2)[1);
double c3 - H3121 [21;
double c2 a 11311] (2];
double cl - H3[0][2);

// compute the sin of theta2
double sin..thet&2 =sqrt(cl *cl c2 *c2);

210

IIcheck for zero
If (Sln..theta2 < 0.001)(

* ~sin-.theta2 a 0.001;

//set the sign of the answer
if (cl <0.)

*sir~theta2 u-1.0; '"

IIcompute the angles
theta2 = atan2(sin...theta2, -c3);
theta3 x atan2(-b3/siritheta2, a3/sin~theta2);
thetal - atan2(c2/sin...theta2, cl/sin~theta2);

IIcompute T..17_to_20
pfl~atrix T_.17...to...20, H~temp;
pfl~atrix T_17..to3 =U0.0, -1.0, 0.0, 0.75),

1.0, 0.0, 0.0, 4.0 1,
0.0, 0.0, 1.0, 0.0)

(0.0, 0.0, 0.0, 1.0)10

pflnvertF'ullMat(H3_inv, H3);

pf~ultMat(H...temp, H3...inv, H20);

* II ~get the data from T..17..to-.20 .
double a2 a T_17to_20[1][0];
double b2 =T_17to_20[l][1];

c3 - T1'17_to_20(21(2];
c2 = T_..7_.to..20(l][2];
cl - T...17_to.20[0] [2];

1/compute the sin of thetal9
double sini..thetal9 a sqrt(a2 *a2 + b2 b2);

1/check for zero
if (sin..thetal9 < 0.001)f

sin..~theta19 a 0.001;

IIset the sign of the answer
if (cl < 0.0)(

Sin..theta2 '= -1.0;

* II compute the angles
thetal9 a atan2(sin..thttal9, c2);
theta20 a atan2(b2/sin~thetal9, -a2/sin...thetal9);
theatalS -atan2(C3/sin~theta19, cl/sirr~thet&19);

211

IIcompute T_20to-21
pfl~atrix T_20to_21, H2Oinv;

pflnvertFulll~at(H20..inv, H20);

pf~ut~a(T_2_to21, 20_nv, 21I
// get the data from '1_20_to_21
a3 = T-20to-2l(2](0];I)
W3 = T..20-..to.21[2] (11;

// compute the angle

theta2l =atan2(a3, b3);

pfMatrix T-.21...to_24, H21_inv;

pfInvertFull~at (H21...inv, H121);

1/get the data from H124
a3 - T-.21...to..24[2]10];
b3 - T...21_.to_24(2] 1];

c3= T_21_to_24(2112];
c2 =T_21_to_24[1](2];
ci - T_21__to_24(01121;

IIcompute the sin of theta23
* double siri..theta23 = -sqrt(a3 *a3 +b3 b3)

//check for zero
if (sin..theta23 >'-0.001)(

sin~theta23 = -0.001;

//compute the angles
theta23 . atan2(sin~theta23, -c3);
theta24 =atan2 (b3/sin...theta23, -a3/sin-theta23);
theta22 = atan2(-c2/sinktheta23, -cl/sin~theta23);

/1convert all, angles to degrees
* ~thetal 1=deg...to~rad;

theta2 Isdeg.to~rad;
theta3 /=deg..to~rad;
thetalE 1 deg..to~rad;
thetal7 /a deg..to~rad;
thetaIS /a deg..to~rad;
theta19 /a degLto...rad;
theta2O /= deg~to..rad;
theta2i /a deg~to~rad;
theta22 /. dea..to.rad;
theta23 /2 deg~to~rad;
thieta24 /2 deg~to..rad;

212

bodywc 9

angles~l] - thetal; t
angles 12] = theta2;
angles(31 - theta3;
angles[4] = 90.0;
angles(S] = 90.0;
angles(61 180.0;
angles(7] = 0.0;

*angles(8] = 0.0;
angles[91 = 90.0;
angles[l0] = 90.0;
angles~il]) = 0.0;
angles[121 = 0.0;
arxgles[131 - 0.0;
angles(141 = -90.0;

*angles[15] 0.0;
angles[16] = thetal6;
angles[17] = theta17;
angles[18] = 90.0;
angles[191 = 90.0;
angles[2o] = 0.0;
angles[211 = 0.0;0
angles[22] = 0.0;
angles[23] = -90.0;
angles[241 = 0.0;

return valid;

/--
//Function: calibrate()
IIPurpose: size the upperbody model to the user
II: calibrate the trackers

IIReturns: TRUE if successful
I--

int Body: :calibrate()

mnt valid = FALSE;

* ~~pfMatrix H~torso..reported, H..uarm...reported;0
pfMatrix HlIarmnreported, H-hand.,.reported;

pfMakeIdentMat (HLtorso..reported);
PfMakeldentMat (H uarm...reported);
pfi~akeldentxat (Hlarnt~reported);
pf~akeldent~at (H.Jand-.reported);

if (fastrak-unit->exigstg))
valid = TRUE;
char str;

213

cerr << endl << "Calibrating sensor orientation in 3 seconds... << endl;
cerr << 'Press <Enter> to start count-down: ;
cin.get(str);
for (nt i=0; i<3; i++) (

sleep(l);
cerr << (char) 7;

// this code allows the fastrak to do the calibration for torso
//float angles[3] = (90.0, -90.0, 180.0};
//fastrakunit->setBoresight(torsosensor, angles);

// get the data to compute the calibration matrices
fastrakunit->copyBuffer(;
fastrak_unit->getHMatrix(torsosensor, Htorsoreported);
fastrakunit->getHMatrix(upperarmsensor, Huarmnreported);
fastrakunit->getHMatrix(lowerarm sensor, Hlarm_reported);
fastrak_unit->getHMatrix(handsensor, Hhandreported);

// compute the calibration matrices

// compute torso sensor calibration matrix
pfMatrix H_torsoreported_iinv;

pfMatrix H_tsdesired = {{ 0.0, 0.0, -1.0, 0.0),
0.0, -1.0, 0.0, 0.0),

{-I.0, 0.0, 0.0, 0.0), *0
0.0, 0.0, 0.0, 1.0)1;

pfInvertFullMat(Htorsoreported'inv, Htorsoreported);

pfMultMat(Hts_to_link3, Hitorsoreportedinv, Htsdesired);

pfMatrix H_ts_desired2 = {(0.0, 0.0, -1.0, 0.0),
(-1.0, 0.0, 0.0, 0.0),
(0.0, 1.0, 0.0, 0.0),
(0.0, 0.0, 0.0, 1.0)} ;

pfMultMat (Htstolink6, Ktorsoreportedinv, HIts__desired2);

//******** *w****investigate offset tracking*********** **** ***** ***

// compute torso sensor calibration matrix for positl6 tracking
// some necessary matrices
pfMatrix Rtxtots, Rtstotx;

pfCopyMat(R-tx.to-ts, Htorso_reported);

// set posit col to zero to work with rotation matrix only
pfSetMatCol(Rtxtots, 3, 0.0, 0.0, 0.0, 1.0);

214

// get the inverse rotation matrix
pfTransposemat (R..ts...to.tx, Rtx...to...ts);

//determine suitable offsets from ts and uas position data
float x_.offset = H..uarm...reported[0H[3] - H-.torso..reported[0] [3];
float y..offset = 8.0;
float z..offset = 0.0;

IIthp offset from ts to rclav in world coordinates0
pfMatrix P..offset...ts_to_rclav = 11.0, 0.0, 0.0, x..offset),

0.0, 1.0, 0.0, y~offsetl,
0.0, 0.0, 1.0, z__.f f set),
0.0, 0.0, 0.0, 1.01);

pfMatrix temp;
pfMultb~at(temp, R-.ts~tc..tx, P-offset_ts~to~rclavl;

* ~~~pfSetMatCol(H...ts...to.positl6, 3, temnp[O] [31, temnp~i [3], temp[21 [31, 1.0);0

// compute upper arm sensor calibration matrix
pfMatrix H_.uarm-.reported...inv;

pfMatrix H~uarm-.desired = (H 0.0, 0.0, -1.0, 0.01,
(0.0, 1.0, 0.0, 0.0),
(1.0, 0.0, 0.0, 0.01,
(0.0, 0.0, 0.0, 1.011;

pflnvertFullMat (H..uarmrLreported..inv, H..uarm..reported);

* ~pfMultMat(H__uas_to_link2O, HCuarn...reported...inv, H~uarm_.desired);0

/1compute upper arm sensor calibration matrix for positl8 tracking

IIsome necessary matrices
pfMatrix R_tx_to_uas, R...uas..to..tx;

* ~~~pfCopyMat(R...tx..to..uas, H...uarm...reported);

IIset posit col to zero to work with rotation matrix only
pfSetMatCol(R...tx...to..uas, 3, 0.0, 0.0, 0.0, 1.0);

// get the inverse rotation matrix
* ~~~~pfTransposeMat(R..uas..to..tx, R..tx..to..uac);

IIdetermine suitable offsets from uas and ts position data
x...offset = 0.0;
y..offset = - (fabs[H..torso..reported[1] [31 H- .uarm...reported[1] [31)-

22.0);
z~pff set . - fabg(H-~torso~reported[2] [3] H- uarm...reported[2] [3]);

215

L.A .AL.,

b~dyxc 12I // the offset from uas to shoulder in world coordinates
pfMatrix P..offset..uas..~to..shoulder ifU 1.0, 0.0, 0.0, X...offsetl, NT

(0.0, 1.0, 0.0, y...offset),
{0.0, 0.0, 1.0, z...offset), -

(0.0, 0.0, 0.0, 1.0));

pf~ultMat(temp, R..uas..~to..tx, P..offset__uas to shoulder);

pfSetMatCol(H~uas-to-positl8, 3, temp[01[3], temp[1] [3], temp[2] [3], 1.0); Ii

p~fMatrix H_larm_desired = if 0.0, -1.0, 0.0, 0.0),
* { 0.0, 0.0, -1.0, 0.0),S

f1.0, 0.0, 0.0, 0.0),
(0.0, 0.0, 0.0, 1.01);

pflnvertFullMat (H...larm...reported...inv, Hlarmmreported);

pfMultMat(H-las-to-link2l, RIlarn..reported.Jnv, H-larmrLdesired);

// compute hand sensor calibration matrix
pfMatrix H_hand...reported~inv;

pfMatrix H-hand_desired = if 0.0, 1.0, 0.0, 0.0),
(-1.0, 0.0, 0.0, 0.0),* *{0.0, 0.0, 1.0, 0.0),

0.0, 0.0, 0.0, 1.0));

pflnvertFullMat (H-.hand~reported.Jnv, Hjihand~reported);

pfMultMat(H_hs_to-link24, H-hand..reported.Jnv, 1...hand~desired);

Iiset upperbody dimensions to that of the user
set..link...length(3, 21.0);
set_link_length(6, 8.0);
set...joint..displacement(16, 26.0);
set-link-length(17, 14.0);
set_link_length(8, 14.0);

6set-link-length(20, 28.0);
set-link-length(1l, 28.0);
set-link-length(21, 29.0);
set...link...length(12, 29.0);
set_link-length(24, 17ý0);
set_link_length(15, 17.0);

return valid;

216

0

APPENDIX E: DEMONSTRATION VIDEO E
Ca

(SE ACCOMPANYING VHS VIDEO TAPE:
"Imiersive Articulation of the Human Upper Body

in a Virtual Environment
Appendix 2: Demonstration Video")

0

217

0

- [1
*

1 4I
* E

4 1
*

* 0

* �0 4

* 0

*

* is

I
* 1O

218

*

-------- .

1 I

* ___ ,,.**4�* � .. *�,*,/.,,> * -

LIST OF REFERENCES

[ADVA961 Advanced Position Systems, Inc., "An RF Head Tracker," Defense Small 0
Business Innovation Research (SBIR) Program Phase 1 Final Report, DoD
Contract Number N00014-96-C-6206, Naval Research Laboratory,
Washington, D. C., 19 October, 1996.

[ASCE95) Ascension Technology, http://www.oz.is/OZMisc/Ascension.html,
Internet

[BACH96a] Bachmann, E. R., McGhee, R. B., Whalen, R. H., Steven, R., Walker, R.
G., Clynch, J. R. Healey, A. J., and Yun, X. P., "Evaluation of an Integrated
GPS/INS System for Shallow-water AUV Navigation (SANS),"
Proceedings of the IEEE Symposium on Autonomous Underwater Vehicle 0
Technology, AUV '96, Monterey, CA, 3-6 June, 1996, pp. 268-275.

[BACH96b] Bachmann, E. R., CS4920 Lecture Notes: Quaternion Attitude Filter,
Naval Postgraduate School, Monterey, CA, November 1996.

[BADL93a] Badler, N. I., Phillips, C. B. and Webber, B. L., Simulating Humans: 0

Computer Graphics Animation and Control, Oxford University Press, New
York, 1993.

[BADL93b] Badler, N. I., Hollick, M. J. and Granieri, J. P., "Real-Tune Control of a
* Virtual Human Using Minimal Sensors" Presence: Teleoperators and *

Virtual Environments, Winter 1993, Volume 2, Number 1, pp. 82-86.

[BIBL95] Bible, Steven R., Zyda, Michael, Brutzman, Don, "Using Spread-Spectrum
Ranging Techniques for Position Tracking in a Virtual Environment,"
Second IEEE Workshop on Networked Realities, Boston, MA, October 26-

* 28 1995.

[CANT95] Canterbury, Michael, An Automated Approach to Distributed Interactive
Simulation (DIS) Protocol Entity Development, Master's Thesis, Naval
Postgraduate School, Monterey, California, September, 1995.

[COOK921 Cooke, Joseph M., Zyda, Michael J., Pratt, David R., and McGhee, Robert
B., "NPSNET: Flight Simulation Dynamic Modeling Using Quaternions,"
Presence, Fall 1992, Volume 1, Number 4, pp. 405-420.

[CRAI89] Craig, J., Introduction to Robotics: Mitchanics and Control, Second
Edition, Addison-Wesley Publishing Company, Inc., Menlo Park,
California, 1989.

219

J. A

0 0.. i

[DAVI93] Davidson, Sandra L., An Eperimental Comparison of CLOS and C++
Implementations of an Object-Oriented Graphical Simulation of Walking
Robot Kinematics, Master's Thesis, Naval Postgraduate School, Monterey,
California, March, 1993. 0

[DURL95] Durlach, N. I. and Mayor, A. S., National Research Council, Virtual
Reality: Scientific and Technological Challenges, National Academy
Press, Washington, D.C., 1995, pp. 188-204, 306-317.

[FOXL96] Foxlin, Eric, "Inertial Head-Tracker Sensor Fusion by a Complementary
Separate-Bias Kalman Filter," Procedings of VRAIS '96, IEEE, 1996, pps
185-194.

[FREY96] Frey, William, IT1, "Application of Inertial Sensors and Flux-Gate
Magnetometer to Real-Time Human Body Motion Capture,' Master's 0
Thesis, Naval Postgraduate School, Monterey, CA, September 1996.

[GRAN95] Granieri, J. P. and Badler, N. I.,"Simulating Humans in VR," Virtual
Reality Applications, Academic Press, ISBN 0-12-227755-4, 1995, pp.
253-269. 0

[GUBI74] Gubina, Ferdinand, Hemami, Hooshang, and McGhee, Robert B., "On the
Dynamic Stability of Biped Locomotion,' IEEE Transactions on
Biomedical Engineering, Vol. BME-21, No. 2, March 1974.

[HODG95] Hodgins, J. K., Wooten, W. L., Brogan, D. C., O'Brien, J. F., "Animating 0
Human Athletics,' Proceedings of SIGGRAPH '95, Los Angeles, CA,
August 6-11, In Computer Graphics, 1995, pp 71-78.

[INTE96] InterSense Incorporated, IS-300 Series User's Guide, Cambridge, MA,
1996.

[KLEI83] Klein, C. A. and Huang, C., "Review of Pseudoinverse Control for Use
with Kinematically Redundant Manipulators," IEEE Transactions on
Systems, Man and Cybernetics, Vol. SMC- 13, No. 3, March/April 1983.

[KOOZ80] Koozekanani, S. H., Stockwell, C. W., McGhee, R. B., and Firoozmand, F.,
"On the Role of Dynamic Models in Quantitative Posturography," IEEE
Transactions on Biomedical Engineering, October 1980, Volume BME-27,
Number 10, pp. 605-609.

[KOOZ83] Koozekanani, S. H., Barin, K., McGhee, R. B., and Chang, H. T., "A
Recursive Free-Body Approach to Computer Simulation of Human •
Postural Dynamics," IEEE Transactions on Biomedical Engineering,
December 1983, Volume BME-30, Number 12, pp. 787-792.

220

[KWAK90] Kwak, S. H. and McGhee, R. B., "Rule-based Motion Coordination for a
Hexapod Walking Machine," Advanced Robotics, 1990 Volume 4, Number
3, pp. 263-282.

[LIPM90] Lipman Electronic Engineering Ltd., V-scopeem VS-100 Owner's Guide
Rev. 1.3, Cat. No. 050-32-002, 1990.

[LIV196] Livingston, M. A. and State, A.,"Magnetic Tracker Calibration ofr
Improved Augmented Reality Registration," University of North Carolina,
Chapel Hill, NC, submitted to Presence, 1996.

[LOGS92] Logston, T., The Navstar Global Positioning System, Van Nostrand
Reinhold, New York, 1992.

[MCGH79] McGhee, R. B., Koozekanani, S. H., Weimer, F. C., and Rahmani, S., 0
"Dynamic Modelling of Human Locomotion" Proceedings of IEEE Joint
Automatic Control Conference, Denver CO, 1979, pp. 405-413.

[MCMI94] McMillan, Scott, Computational Dynamics for Robotic Systems on Land
and Under Water, Ph.D. Dissertation, Ohio State University, 1994.

[MCMI95] McMillan, S, Orin, D. E., and McGhee, R. B., "DynaMechs: An Object
Oriented Software Package for Efficient Dynamic Simulation of URVs,"
Underwater Robotic Vehicles: Design and Control, TSI Press,
Albuquerque, NM, 1995, pp 73-98.

[MCMI96a] McMillan, Scott, "A Computational Framework for Simulation of
Underwater Robotic Vehicle Systems," Autonomous Robots, 3, pps 253-
268, Kluwer Academic Publishers, Norwell, MA, 1996.

[MCMI96b] McMillan, Scott, "Upper Body Tracking Using the Polhemus Fastrak,"
4 Technical Report NPSCS-96-002, Naval Postgraduate School, Monterey,

CA, January 31, 1996.

[MEYE92] Meyer, K., Applewhite, H. L. and Biocca, F. A., "A Survey of Position
Trackers" Presence: Teleoperators and Virtual Environments, Spring,
1992, Volume 1, Number 2, pp. 173-200. 0

[POLH93] Polhemus, 3Space Fastrak User's Manual Revision F, OPM3609-002C,
November 1993.

[PRAT94] Pratt, D. R., Barham, P. T., Locke, J., Zyda, M. J., Eastman, B., Moore, T.,
* Biggers, K., Douglass, R., Jacobsen, S., Hollick, M., Granieri, J., Ko, H.

and Badler, N. I., "Insertion of an Articulated Human into a Networked
Vurual Environment," Proceedings of the Fifth Annual Conference on Al,

221

#S

F -I

Simulation and Planning in High Autonomy Systems: Distributed I
Interwactve Simulation Environments, IEEE Computer Society Press, 4
Gainesville, Florida, December 7-9,1994, pp. 84-90.

[PRAT95] Pratt, S. M., Pratt, D. R., Waldrop, M. S., Barhanj, P. T., Ehlert, J. F. andChrislip, C. A., "H-umuans in a Large-Scale, Real Time, Networked VirtualEnvironments:' submitted to Presence, 1996.

[SYSTRO] Systron Donner, Inc., Systron Donner Model MP-GCCCQAAB MotionPak
IMU, Concord, CA.

[WALD95] Waidrop, Marianne S., Real-time Articulation of the Upper Body for
Simulated Humans in Wrtual Environments, Master's Thesis, Naval
Postgraduate School, Monterey, California, September, 1995.

(WATT92] Watt, A. and Watt, M., Advanced Animation and Rendering Techniques:
Theory and Practice, Addison-Wesley Publishing Company, Inc., New
York, 1992, pp. 369-394.

[ZYDA92] Zyda, M. J., Pratt, D. R., Monahan, J. G. and Wilson, K. P., "NPSNET:
Constructing a 3D Virtual World," 1992 Proceedings of Symposium on
Interactive 3D Graphics, pp. 147-156.

222

222

. ..

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center ... 2
8725 John J. Kingman Rd., STE 0944

Ft Belvoir, VA 22060-6218

2. Dudley Knox Library .. 2
Naval Postgraduate School
411 Dyer Road
Monterey, CA 93943-5101

3. Clh rman, Code CS ... 2
Computer Science Department
Naval Postgraduate School 0
Monterey, CA 93943-5000

4. Dr. Robert B. McGhee, Professor .. 2
Computer Science Department Code CS/
Naval Postgraduate School 0
Montery, CA 93943-5000

5. John S. Falby, Senior Lecurer .. 2
Computer Science Department Code CS/Fa
Naval Postgraduate School 0
Monterey, CA 93943-5000

6. Don Brutzman, Associate Professor .. 1
Undersea Warfare, Code UW/Br
Naval Postgraduate School 0

* Monterey, CA 93943-5000

7. Dr. Rudy Darken, Assistant Professor ... 1
Computer Science Department Code CS/DR
Naval Postgraduate School 0

* Monterey, CA 93943-5000

8. Eric I. Bachmann, Lectuer .. I
Computer Science Deparunent Code CS/Ba
Naval Potgraduate School

* Monterey, CA 93943-5000

223

• •

9. Director ... 2
Marine Corps Research Center
MCCDC, Code: C40RC
2040 Broadway Sawee
Quantico, VA 22134-5107 4

10. D irector ... 1
Studies and Analysis Division

*i MCCDC, Code: C45
3300 Russell Road
Quantico, VA 22134-5130

11. Major Paul F. Skopowski .. 2
* 4452 Majestic Lane 0

Fairfax, VA 22033

* 0

* 0

* 0

224

* 0

4

